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EXECUTIVE SUMMARY 

This evaluation has reviewed much of the published literature regarding trend analysis methods. 
Emphasis was placed on trend analysis of environmental water quality data. The literature review 
indicates a number of properties of groundwater quality data that may influence the selection of a 
statistical trend analysis method and its ability to correctly recognize a trend. These data properties 
include issues such as extreme observations (outliers), censored data, missing observations, serial 
correlation, and non-normal distributions. 

Most of the published investigations of water quality trends since 1980 have used nonparametric 
statistical tests for monotonic trend. Parametric trend analysis methods require sample data to be drawn 
from a normally distributed population. Parametric methods that involve computation of the sample 
mean and standard deviation are more seriously impacted by data outliers than are nonparametric 
methods. Experience with groundwater quality data has also indicated that it is frequently non-normal. 
This shifted the focus of the report to the selection of a few candidate nonparametric methods for further 
evaluation. 

were: 

e 

e 

e 

, 
Three nonparametric trend analysis methods that are widely used in the water quality literature were 
selected for further testing using groundwater quality data collected at RFETS. The candidate methods 

Mann-Kendall test for trend on unadjusted concentration data. The Sen’s slope estimator method 
was used with the Mann-Kendall to estimate trend magnitudes; 

Mann-Kendail test for trend on deseasonalized concentration data. Deseasonalization was 
performed using the method of EPA (1989); and 

Seasonal-Kendall test for trend on unadjusted concentration data. The Seasonal-Kendall slope 
estimation method was used with this test. 

Groundwater data for testing these methods was drawn from the “Groundwater Superset.” Test data 
contained examples of many of the data properties listed above, e.g., outliers and missing data. Data were 
selected to compare trend test results for three groundwater sampling intervals (seasons) semiannual’, 
quarterly, and monthly. 

Shapiro-Wilk or Shapiro-Francia tests indicated that about 40% of the groundwater data were not 
normally distributed. This supported the decision to use nonparametric trend analysis methods. 

The three candidate nonparametric methods gave similar trend predictions regardless of whether the input 
data were defined as semiannual seasons, quarterly seasons, or monthly seasons. This was surprising 
since much of the data was missing for monthly seasons. The methods all worked smoothly with the 
RFETS groundwater test data despite the presence of data issues such as outliers. 

ix . 
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The Seasonal-Kendall test is preferred over the ordinary Mann-Kendall test for post closure monitoring at 
RIETS for the following reasons. 

. .  

.I 
; '- 1 

. Statistically significant seasonality was identihed at 95% confidence in some of the RFETS 
groundwater test data. The Mann-Kendall test on unadjusted data d&s not account forthis.. 

' 

. .  . _  . .  

. TBe'Seasonal-Kendall test agreed closely 188% of the time) with the,Mann-Kendall test. when 

I 

the latter was used on deseasonalized concentration 'data. Thus we'should.use the.Seasonal- 
Kendall test and avoid the need to deseasonalize the groundwater data. 

~ . 

0 

' 

The Seasonal-Kendall test (used at 95% confidence) agreed'well(86 to 88%) with the more 
' subjective trend identifications'made by visual'inspection. of seasonality plots, or of LOWESS 
smooths. ' " .  

. .. . . ,. 

.:. . . . .  . .  . ' .  . -  

Statistical methods for trend testing generally assume that the concentration data are independent (i.e., not 
serially correlated). The Rank Von Neumann test was run to test for serial~correlation in thegoundwater 
data. Data were first deseasonalized and then detrended prior to running the Rank Von Neumann test, 
because it is sensitive to trend and'seasonality. Statistically significant (at 95% confidence) serial . . 
correlation was' found in some of the quarterly and sehannual data. The litera'turi indicates that serial - ' 

correlation is greatest at higher simpling frequencies. . Therefore, . .  semiannual groundwater sampling is' . 

preferred,over quarterly or monthly sampling, for post-closure monitoring. 

Measured deviations from mean water table elevation were used as an exogenous variable for trend I 

analysis of groundwater. LOWESS smooths were used to adjust concentration data for groundwater for 
hypothetical impacts due to water table changes at RFETS. The Seasonal-Kendall test was applied to the 

' adjusted data (concentration residuals) and the results were compared with those 'based on unadjusted 
data. The preliminary evidence (based on a few well-analyte combinations) indicates that water'level 
adjustment of analyte concentrations in RFETS groundwater fails to enhance detection of concentration 

. .  

. . .  

.. , 

. _  + , : .  , . 

* .  .. . 

'.. , . . . versus time trends. _ .  

The literature suggests that .nonparametric trend analysismethods,.including . .  the Seasona1:KendaIl. test, 
are not robust against serial correlation. However, 'despite the serial correlation found in some 'RFETS 

. test data, the trend predictions of the Seasonal-Kendall test agreed very well with the visually . .  observed 
trend. It is concluded that the  seasonal-Kendall test should work well on groundwater. data collected' 
semiannually for postclosure monitoring. 

A possible alterndive, for, post closure monito-ng is to use a modified version of the Seasonal-Kendall 
test which compensates for serial Correlation (Hirsch and Slack, 1984). However, this- modified test 
requires at least 1 0  years of record, and is less powerful than the ordinary Seasonal-Kendall test when the 
data lack.serial correlation. Therefore, if statistica1ly.significant serial correlationis not found .to.be 
common in the post-closure data, the ordinary unmodified Seasonal-Kendall remains the best monotonic 
trend test. - .  

. .  . .  
.. . *  . .  I -: .. 3 . .  

. .  . . .  . .  . 

I 
I 
1 
I 
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ACRONYMS & TERMS 

Alpha 

Alternative Hypothesis 
- 

Anilyte 

ASD 

Autocorrelation 

Beta 

CDPHE 

Coefficient of 
Determination 

Comparison-Wise Alpha 

Confidence Interval 

Cokfidence Level 

CRDL 

Degrees of Freedom 

Alpha (a) is the false positive rate or probability of making a Type I Error 
during statistical testing. 

In statistical hypothesis testing, the alternative hypothesis is accepted astrue 
if the null hypothesis is rejected. See Null Hypothesis. 

A chemical or radionuclide whose concentration or activity in a groundwater 
sample is analyzed by an analytical laboratory. 

Kaiser-Hill Analytical Services Division. This group establishes procedures 
and contracts that govern the analysis of groundwater samples collected at 
RFETS, and the subsequent verification and validation of the analytical data. 
ASD is also responsible for entering the data into SWD. 

/ ,  

i 

Synonym for Serial Correlation. 

Beta (p) is the false negative rate or probability of making a Type I1 Error 
during statistical testing. 

Colorado Department of Public Health and Environment. 

The coefficient of determination (R2) is the square of the correlation 
coefficient. It is a measure of the overall fit of a statistical model, such as 
linear regression. A perfect fit of data to a model would have an R2 of 1. 

Maximum probability of making a false positive error for one individual 
statistical decision regarding one analyte in one well. See Overall Alpha. 

A range of values or interval which has a know probability (or confidence) of 
including the true value of a population parameter (e.g., the mean). 

In a statistical test, the confidence level is the probability of correctly 
concluding that the null hypothesis is true. The confidence level equals 1 
minus the false positive rate alpha. 

Contract Required Detection Limit. A synonym for RDL. 

Carbon tetrachloride. 

i 

,, 

, I  

Decontamination and Decommissioning. 

Refers to the volume of data on' which a statistic is based. 

Review .Exemption: CEX-105-01 
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. Dependent Variable 

Detect 

Detection Limit 

DOE 

Endogenous Variable 

EPA 

Exogenous Variable 

Explanatory Variable 

False Negative 

False Positive 

Frequency Distribution 

Hypothesis 

Hypothesis Test 

. .  

IA 

\‘ 

This variable (e.g., chemical concentration) may vary due to the influence of 
independent variables (e.g., time or distance): 

A concentration at which the presence of a chemical is detected in a water 
sample at or greater than a reporting limit. See also nondetect. . ’  

Any of several defined limits below which the concentration of an analyte ‘ 
cannot be reliably determined.’ See MDL and PQL. 

United States Department of Energy. 

A dependent variable whose value is determined within a statistical model. 

United States Environmental Protection Agency. 

An independent variable whose value is determined externally to a statistical 
model. 

A synonym for independent variable. 

In statistical testing, a false negative decision is made when the alternative 
hypothesis is true, but the test mistakenly fails to reject the null hypothesis. 
This is a Type 11 error. 

In statistical testing, a false positive decision is made when the null 
hypothesis is true, but is mistakenly rejected. This is a Type I error. The 
false positive rate is given by alpha. 

The absolute or relative frequencies in which concentration measurements fall 
into defined ranges or classes. A histogram is a graphical display of a 
frequency distribution. The shape of a histogram or frequency distribution 
may be related to a probability function, such as the normal distribution. 

An hypothesis is an assumption about a property of a population under study. 

This test is a statistical technique for choosing between two alternative 
hypotheses, the “null hypothesis” and the “alternative hypothesis.” The null 
hypothesis is considered to be true unless there is sufficient evidence to reject 
it, in favor of the alternative hypothesis. 

The industrial area at RFETS. 
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K-H 

LOWESS 

MCL 

MDL 

Mean 

Median 

Model 

Net Infiltration 

Normal Distribution 

Nonparametric 

Independent Variable 

. .  
. .  
I. - .  

Parametric 

\1J: 
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A measurement such as elapsed time or distance, which is hypothesized to 
influence a dependent variable, such as concentration. 

Kaiser-Hill Company, LLC. 

- Locally-weighted scatterplot smoothing (Cleveland, 1979). 

Maximum Contaminant Level. 

Method detection limit. 

A statistic described as the arithmetic average of a set of concentration data. 
The mean is the sum of the concentrations divided by the number of data 
points. 

If data are ranked or sorted in ascending order, the median is the middle 
value. If the number of data points is even, the average of the two middle 
values is the median. 

In statistics, a model is a mathematical description of set of data. For 
example, linear regression assumes that the data can be described by a linear 
equation. 

Rainfall and snowmelt does not all reach the groundwater table. Some 
precipitation evaporates, runs off in streams, or is taken up by plants. Net 
infiltration is the fraction of water that infiltrates through the vadose zone and 
reaches the groundwater table. 

A family of symmetrical, bell-shaped distributions whose shape is 
characterized by the mean and variance. The mean falls at the center of the 
distribution, while the spread of the data is reflected by the variance. 

A class of statistical tests that do not make assumptions about the shape of the 
underlying probability distribution, and require relatively few assumptions to 
be met for a valid test. Therefore, nonparametric tests may have broader 
applicability to environmental data than parametric tests. 

A class of statistical methods whose validity is'dependent on a number of 
assumptions about the data. The central parametric assumption is often that 
the data are drawn randomly from a particular distribution, usually a normal 
distribution. Another common assumption of parametric tests is that the 
residuals (e.g., from regression analysis) are normally distributed. 

xiii 
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Power 

u g n .  

mgn. 

Monotonic Trend 

Nondetect 

Overall Alpha 

pCiL 

Power 
I _  

PQL . 

QC 

R 

RCRA ,, , ." 
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In the context of this report, a statistical population is the full setof possible 
analytical measurements at a monitoring well. Statistical inferences are made 
about the properties of this population from a small set of measurements 
made on water samples collected from the well. 

The power of a statistical test is the probability that the test will (correctly) 
reject the null hypothesis when the null hypothesis is, in fact, false. 

Micrograms per liter. 

I 
I 
I 

Milligrams . .  per liter. 

1 A type of trend involving generally smooth increases or decreases in 
concentration or activity over time. See also step trend. 

Describes an analytical concentration determined to be at or below the 
'reporting limit (RDL). The compound is either not present (i.e., a 0 
concentration typically for a manmade chet&a! j, or for ubiquitous, naturally- 

Laboratories .. . . .usually . .  report nondetect results as the magnitude of-the reporting 
liniit with a "U" result qualifier code. Older groundwater . .  quality data in 
SWD may use a "cy' qualifier,code. Less commonly, zero concentrations may 

' " 

occurring chemicals . . the I .  true . concentration . .  may, be >O but CRDL. . , (  

. .  
.be found in SWD for some nondetects. 3 1  

. .  
_ . .  . , . . . . .  . . .- 

The..probability of a Type I ep-or:on an experiment-wide basis over all 
statistical tests for multiple wells oc.analytes, It contrasts with the 
comparison-wise alpha. 

.' . . * .  . . . / . .  

. .  I .  

Tetrachloroethene. . ,. . . .  

picbcuri'ci peilitei. ' . ' ' 

See statistical power. 

-,Practical.Quantitation Limit is a type of analytical detection limit: The PQL 
is the lowestkoncentration'for which the 95% confidence interval brackets 
the true concentration within 20%. 

. .  . .  , .  . .  . . .  .. - 
., , 

, . ... 

.~ ~ 
. .  
. ... ..- ~. 

. .  

Quality Control, as in a QC sample generated for quality control purposes. 

The correlation coefficient in linear regression. 

Resource Conservation and Recovery Act. 

Review Exemption: CEX-105-01 
xiv 



RDL 

REAL 

ReGession Analysis 

Reporting Limit 
. -  

.. I 

. Residual 

RFCA 

RFETS 

Robust Test 

R2 

Sample Size 

Serial Correlation 

. t 

SEP 
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A Required Detection Limit specified by ASD. A synonym of CRDL. 

REAL is a SWD code identifying “primary” or “real” samples, as opposed to 
QC samples. In this report, REAL, refers to analytical data describing the 
primary groundwater sample collected at a well or building drain during a 
sampling event. 

A mathematical procedure for finding the parameters of the best-fit model for 
the data. For example, linear regression finds the parameters (slope and y- 
intercept) of a linear model. 

Reporting limit is often used as a synonym for detection limit. However, 
detection limits are often properties of an analytical method or instrument, 
while reporting limits are imposed on a laboratory by a client or service 
contract. 

In regression analysis a residual is the difference between the measured value 
and the value predicted by the regression equation (fitted model). 

Rocky Flats Cleanup Agreement between CDPHE, DOE, and EPA, 1996. 

Rocky Flats Environmental Technology Site. 

A statistical test which,is approximately valid under a wide range of 
conditions (EPA, 1992). 

The “coefficient of determination” is the square of the correlation coefficient 
and is a measure of the overall fit of a regression model. It varies from zero 
(no relationship) to unity (indicating that the model perfectly fits the data). 

The number of samples or data values used to statistically describe a 
population. 

A measure of the extent to which successive measurements or observations 
are related. Environmental samples collected repeatedly over short time 
intervals or short spatial distances, frequently show serial correlation. 

The former solar evaporation ponds located in the northeast comer of the IA 
at RFETS. 

. 
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\") 

Standard 'Deviation 

Statistical Power 

Step Trend 

SWD 

TCE .. . 

Type I Error 

Type I1 Error 

Variance 

. VOA 
' , '  

voc 

>= 

<= 

> 

< 
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The square root of the variance, or the square root of the average squared 
deviation from the mean of the data in a sample set. The "sample standard 
deviation" computes the average by dividing by n-1 rather than n, where n is 
the number of data points in the sample. See variance. 

' 

' 

. .  
This is the overall efficiency, strength, or ability of a statistical hypothesis test 
,to predict a'correc t decision. 

A step trend may be.thought of as an abruptchange inswater quality 
(concentration or activity) due to an event sucli.as-a contaminant spill or tEe 
implementation of a new water treatment system: 

RFETS Soil Water Database maintained by ASD. 

Trichloroethene. . .  . 

.- 
' ' 

. .. 
. .  I . I  

' ., 

See False Positive. 

See False Negative. 

The average squared deviation from the mean of the values in a sample set, or 
population. It is also the square of the standard deviation. 

Volatile Organic Analyte. 

Volatile Organic Compound, a synonym for VOA. 

Value on the left is greater than or equal to the value that follows the >= 
symbol. 

Value on the left is less than or equal to the value that follows the <= symbol. 

Value on the left is greater than the value to the right of the > symbol. . 

Value on the left is less than the value to the right of the c symbol. 

L .  

i 

8 
' -1 

8 

I 
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1 INTRODUCTION AND OBJECTIVES 

The objectives of this report are to perform the following tasks related to trending of water quality data: 

Identify and review relevant technical literature (statistical, hydrologic, and geochemical) for 
potential methods of identifying water quality trends; 

Summarize the advantages and disadvantages of each potential method based on the published 
literature; 

Select a subset of candidate methods that appear to be suitable for trending groundwater quality 
data. Factors effecting method suitability, such as statistical power and statistical properties of 
water quality data will be defined and discussed later in this report; 

Retrieve a small set of groundwater quality data from the RFETS Soil and Water Database 
(SWD) for wells and analytes likely to be selected for postclosure groundwater monitoring; 

Apply the candidate methods to the set of groundwater data, evaluate their performance, and 
summarize their strengths and weaknesses; and 

Recommend one or more candidate methods for trending postclosure groundwater monitoring 
data at RFETS. 

The report is organized into six sections. Section 1 states the objectives of the report. Section 2 
summarizes the statistical properties of water quality data and how they may affect trend analysis. 
Section 3 discusses methods of trend analysis, and selects several preferred candidate methods for testing. 
Section 4 discusses the evaluation of candidate trending methods on test data using groundwater quality 
data collected at RFETS. Conclusions and recommendations are presented in Section 5. Section 6 lists 
the references used to develop this document. Appendices of data and statistical results are included at 
the end. 
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2 

Water quality data consist of analytical chemistry or radiochemistry measurements of the concentrations 
or activities of chemicals (i.e., analytes) dissolved andor suspended in a water sample. The statistical 
properties of this data affect which statistical methods are most suitable for recognizing water quality 
trends. It is also important to decide what type of trend we are seeking to identify, as this effects the 
selection of a trending method. 

STATISTICAL PROPERTIES OF WATER QUALITY DATA - 

2.1 Statistical Distribution 

The statistical distribution of the population from which the samples are drawn has a strong effect on the 
kinds of statistical methods that are applied to the data. For their validity, parametric tests usually require 
certain statistical properties of a data population to be true. A cqmmon parametric assumption is that the 
data in the sample set were randomly selected from a normal distribution. A related condition associated 
with hypothesis tests for linear regression (a common trending method) requires that the residuals of the 
regression be normally distributed. 

Professional experience has shown that there is little justification in assuming that water quality data are 
normally distributed. When sufficient data exist for statistical testing, water quality variables are 
frequently found to be non-normal (and often are positively-skewed). Hirsch and Slack (1984) report that 
pH, dissolved oxygen, and water temperature data &e oken normally distributed. However, some water 
quality variables fit a lognormal, or less well known distribution. For example, statistical analysis of 
water quality for a river in Greece indicated that river discharge, dissolved oxygen, conductivity, calcium, 
and nitrate concentrations followed the Weibull distribution (Antonopoulos et al., 2001). These authors 
also found evidence that the distribution of temperature was normal, total phosphorous was lognormal, 
sulfate followed the gamma distribution, and magnesium followed the logistic distribution. Hirsch and 
Slack (1984) also note that many types of hydrologic and water quality data are distinctly non-noml. 

Professional experience has also shown that probability plots of concentration data sometimes show linear 
regions (of different slope) connected at inflection points. These plots suggest that the data were drawn 
from two distinct normal or lognormal populations. The population with the lower mean may represent 
background, while the other population may represent superimposed contamination. 

Nonparametric statistical trending methods impose less restrictive requirements on the data and are more 
appropriate than parametric methods when the data are non-normal (Hirsch et al., 1991; Hirsch and Slack, 
1984; Hirsch et al., 1982). 

\ 

2.2 Defection Limits and Censored Data 

Censoring of a statistical population of concentration data occurs when samples are not drawn from the ' 

tails of the population. This most commonly occurs when an analytical laboratory cannot measure (i.e., 
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detect) chemical concentrations that are less than a detection limit. The statistical :issue is. that ,parametric 
procedures are less powerful when used on censored data, and hypothesis tests and trend slopes are less . 
accurate (Hirsch et ai., 1982). Censoring of environmental data is more of a problem for miinmade 
chemicals (e.g., chlorinated solvent compounds) that are spatially limited in extent. Although they occur ' ' 

naturally,' trace metal concentrations irgroundwater and surface water &e also frequently censored if the 
. .  analytical methods employed do not have sufficient sensitivity. . .  

~. . .  

Detection limits are associated with.analytica1 methods andrepresentthe.concentration of a chemical or 
the.activity of a radionuclide that can be quantified with a stated degree of precision. A variety of types 
of reporting limits have been. defined in the analytical chemistry literature. Some conkon types are 

.. 
' 

, ,  .. 

mentioned below. 
a .  . 

. .  
. Contract required detection limits (CRDLs) define the concentrations . ,  that an analytical laboratory is ' .:_ 

required to achieve 'to meet its contractua1:obligations to aclient . .  (e~g.;Kaiser-Hili.'Analytical . .  Services , .  . :. 

Division). The analytica1.methods used by the laboratory must be' capable of detectinglconcentrations , .. at . 

or below the contract-specified CRDL value. In general, the term reporting l i h t  (RL):is a synonymfor 

. .  I .  , 
. 

. 

. , CRDLs imposed on a laboratory by a client (Rong, 2002). , 
. .  

. . ' . , . ,  , ,  :: .. 
'The instrument detection limit (IDL) reflects the'analytical sensitivity of a particular instniment such as . . , 

an atomic absorption spectrophotometer. ,Tie IDL 'is the.1owest detection above thehstrument noise' ' 

defined as the minimum concentration of an analyte that can be measured by the methoa"and'rep0rted 
with 99% confidence that the concentration is greater than zero (Rong, 2002). 'More sensitive analytical . '  

methods obviously have lower ~ L s .  I&Ls are generally higher'than bLs ' for  the same analytes. 
Practical quantitationlimit (PQL) is typically two to ten times'higher than the MDL.for an analyte. '':: ' . 

Detection limits may vary with the cheniistry of the water sample being'analyzed as.they are matrix'.. . ! '  

quantitation of the analyte (i.e., target compound) ... Reporting. lintits usually increase when it is ne 
for'a laboratory to dilute a sample in order to bring thehalyte concentration-within the linear Cali 

' 

. .  
. .  

' .  , - .  

(1 
IE 
I 

level. A method detection limit (MDL) is-associated with'each analytical method. The MDL'can be . .  
. 

. .  

. .  r .  

. 
4 , ~ .  . .:. 

. .  
, '  

: 

Specific (e.g.; water, soil). Reporting limits may increase if other chemicals in:the'sample intedere wit , .  

. . . , . .;, . . ; . .  . , .  - . . I .  . . .  

I 

range of the analytical instrument. 

Water quality data collected at RFETS frequently have multiple reporting limits for a given analyte. This 
has occurred because of changes in analytical laboratories under contract, changes in analytical methods 
used, and changes in contract-specified detection limits. Multiple reporting limits have also occurred in 
response to matrix effects and'dilution of samples by the laboratory. 

I 
I When multiple reporting limits are present in data for a single analyte, it can be reported as undetected at 

several different concentrations. A switch to a more. sensitive analytical method with a lower detection 
limit will often result in detected concentrations between its low kL and older nondetects at a higher RL. 
This greatly complicates statistical analysis of the data and may lead to a loss of information during such 
analyses. . .  
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Nondetect data are commonly incorporated into statistical procedures by a simple substitution method. 
The nondetect concentration is replaced by a constant such as the full detection limit, half the detection 
limit, or zero. Improved estimates of the true values of nondetect data (with multiple detection limits) 
may be computed through advanced procedures such as maximum likelihood estimation and probability 
plotting procedures (Helsel and Cohn, 1988). 

Some nonparametric methods can be used with data containing multiple reporting levels. However, the 
methods may require the analyst to recode nondetects and detects that fall below the highest detection 
limit, as if they were nondetects at the highest detection limit. This effectively results in a loss of 
concentration information from the more sensitive analytical methods. 

To minimize changes in reporting limits, a postclosure Integrated Monitoring Plan (IMP) should be 
ed that specifies a suitable analytical method and detection limit for each contaminant of concern 
Consistent field sampling, sample preservation, and laboratory analysis procedures should also 

be followed during post-closure monitoring. \ 

2.3 Serial Correlation Versus Independence 

Serial correlation is also called autocorrelation. Statistical trend testing techniques require that the data be 
uncorrelated (i.e., independent). If the data are not independent, but are serially correlated, the tests will 
be inaccurate. Serial correlation is difficult to detect in small data subsets. It is usually detected by 
investigating the residuals after removing seasonality and trend (Gauthier, 2001). A common test for 
serial correlation is called the Durbin-Watson test (Neter et al., 1988). The Rank Von Neumann test may 
also be used for serial correlation in the absence of trends or cycles (IDT, 1998). 

Serial correlation becomes an issue in time series water quality data when the time steps (sampling 
intervals) are small in comparison to the residence time of the water being sampled (Gauthier, 2001). 
Thus, semiannual or quarterly groundwater sampling should have less autocorrelation than monthly 
sampling at a given well. RFETS can minimize the effects of serial correlation by adopting a semi-annual 
sampling frequency for postclosure groundwater monitoring, when possible. 

2.4 Seasonality and Climatic Cycles 

Published literature distinguishes cyclic effects on water quality from trends. Climatic cycles tend to be 
irregular, multiyear changes in weather patterns. These cycles may impact local water quality mainly.: 
through changes in total annual precipitation. Climatic cycles are conventionally treated as having 
periods greater than one year, in contrast to seasonal cycles, which have periods up to one year (see the 
classical time series model in Neter et a]., 1988). ” 

Seasonal effects on groundwater quality at RFETS have been suggested but not statistically tested or 
verified. Although a thorough evaluation of seasonality is beyond the scope of this report, a small set of 
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RFETS groundwater quality data have ,been examined for evidence of. seasonality:.:This is discussed-as . ' 8 
t 

, '  1 
.I 
I 

part of the evaluation of trend testing methods in Section 4.' It is'hypothesized that seasonality might . ' 

. ' effect groundwater quality .through the.following mechanisms: ' .  . .  . 

,.. . . . .  

. 
, . Net precipitation infiltration over contaminated soil areas might dissolve and transport-soluble 
. 

. ' . 

contaminants to the groundwater; or 

.Net precipitation infiltration'through clean.soils (or.insoluble co.ntafinants)-might. act to dilute . . 

the existing soluble groundwater constituent concentrations. 

. I  

' 

. .  r, , *  .. I 

'Trend testing methods that minimize or remove seasonal effects are discussed in Section 3. 
, . . . .  . .  . .  . .  . .  - 

A statistical test for seasonality effects in ,water.quality is the I$ruskal-Wallis multisample test ,for' . !::. 

collected and analyzed by the USGS (Hirsch et al., 1982). . . .  . . .  

. . . .  
? 

identical populations. (Bradley, 1968). Seasonality was found to be common in some surface,water data . . .  

. . .  . ., ' . .  .. 

2.5 Missing Observations Per Sampling Event <,'. . . ,. ' 

I 
I 
P 

Missing observations (i.e., data) may occur by both natural and anthropogenic processes. Water samples 
may not be available seasonally, or during a dry year because of a lack of precipitation. Many monitoring 
wells at RFETSare seasonally dry and may remain dry until there is a wet year or a major storm event. 
Ideally for statistical analysis, these wells should be excluded from a post-closure monitoring network. 
Abnormally dry years could also result in an inability to sample groundwater at a well in the network. 
Similarly, water samples may be collected, but lost during packing and shipping, or spilled or otherwise 
compromised at the analytical laboratory. All of these events may result in missing observations. 

/ 

Obviously, as the proportion of missing data increases, less will be known about a potential water quality II 
trend at that monitoring location. Some statistical trending methods are less affected,by missing data than 
others. These potential effects will be discussed-in Section 3. 

/ 

2.6 Multiple Observations Per Sampling Event 

Multiple observations (i.e., data records) may be present in historical groundwater quality data for several 
reasons. Field duplicate or split (replicate) samples may have been collected and analyzed in addition to 
the primary water sample. After removing the field-originated QC data and the laboratory-originated QC . 
data, historical data may still contain other sources of multiple records per analyte per well for a particular 
sampling event. The analytical laboratory may have diluted a sample to work within the instruments' 
linear calibration range or the laboratory may have re-extracted the sample and re-analyzed the extract. 

0 
D 
1 

, 

Multiple observations per season may also occur when the frequency of water sampling has changed over 
the course of a long-term groundwater monitoring program. Presently, most wells at RFBTS are sampled 
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semiannually, but RCRA wells are sampled quarterly. Based on water quality results, these routine 
sampling intervals may be reduced to monthly sampling for three consecutive months under requirements 
of the IMP. Wells that produce little groundwater are routinely visited on a monthly basis in attempts to 
collect water quality samples. Groundwater samples have also been collected outside the routine 
monitoring program to meet short-term objectives and project needs. 

The problem with multiple records is that most trend analysis procedures expect a single data record per 
analyte per, well per season. If there are multiple sampling events per season or multiple data records per 
season, a representative value must be selected. Statisticians refer to this process as “collapsing data”. In 
nonparametric statistics, the median concentration may be selected, or in parametric statistics a mean may 
be computed to represent the seasonal concentration. Random subsampling can also be used to select one 
of the multiple records to represent a season. Statistically, random subsampling is considered a more 
effective method of collapsing data than using the mean or median (Harcum, Loftis, and Ward, 1992). 

2.7 

Statistical trending methods may utilize exogenous variables to more clearly identify water quality trends. 
Lag times must be considered during trend analysis when they may delay the impact of an exogenous 
variable on a water quality trend. 

An exogenous variable, e.g., stream discharge, is an underlying factor that may effect concentration 
versus time trends in surface water quality data. Potential exogenous variables for groundwater quality at 
RFETS, are total monthly precipitation, monthly net infiltration, or variations about the mean groundwater 
level. 

If a chemical was spilled directly into a creek via a truck accident, the local water quality impact would be 
almost immediate. That is, it would have a very short lag time measured in minutes. In contrast, 
groundwater migrates slowly, with estimated flow velocities of 41 to 717 feet per year at RFETS during I 

2002fK-H, 2004a). The average flow velocity in Rocky Flats Alluvium was estimated at 91 feet per 
year. Therefore, VOC-contaminated groundwater leaving IHSS 118.1, for example, would require many 
years to  migrate to the North Walnut Creek drainage, ignoring retardation effects. This is an example of a 
long lag time between a contaminant source and a potential impact on surface water quality. 

Exogenous Variables and Lag Times 

i 

Continuous monitoring of groundwater levels has been performed in selected wells at RFETS since 1998 
as part of the real-time groundwater monitoring network (K-H, 2004a). Hydrographs ’from these wells are 
constructed with superimposed plots of precipitation data for the same time periods. These plots indicate 
several types of groundwater level response patterns with different lag times between precipitation event 
and wate; level change. Analysis of these responses is beyond the scope of this report, but in general, 
shallow alluvial wells (e.g., Wells B210489, 3686, and 6886) respond very rapidly, with lag times of less 
than one day. Many wells located in the IA have lag times of a few days up to 10 days. Other wells 
located east or southeast of the IA (e.g., Wells 1487,05191,03791, and 20991) appear to have water 

.- L 
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, levels dependent on baseflow conditions, and their water levels show little or no response to precipitation 
, .  , .  events (i.e.;they may have very :long lag times). 

It is believed that shallow groundwater quality at .RFETS may be impacted by cyclic and seasonal 
variation in net precipitation infiltration or evaporation. Cyclic water quality 'effects may occur as 
precipitation infiltrates and dissolves soluble surficial or vadose zone soil contamination and transports it 
to the underlying groundwater. Conversely, infiltration of clean precipitation to the underlying' .. 

groundwater might dilute any existing groundwater contaminants. Furthermore, evaporation of 
contaminated water in the vadose zone or from the shallow water table could also impose cyclic water 
quality effects. If these cyclic effects are significant.at RFETS, they.should be accounted for prior to . 

. .  ( ,  ' 

' 

performing the trend analyses so that.underlying groundwater quality trends are recohized. .. ' . .  
. .  . .  - 

.. ' Groundwater levels are measured .immediately prior to water quality -sampling at RFETS and these levels 
likely reflect the'net precipitation infiltration :rate since most ,wells'are.sampled semiannually. Therefore, 
measured deviations from the mean groundwater elevation (or mean depth'below top of casing) provide a 

' promising exogenous variable for use in identifying groundwater quality 'trends.' This exogenous -water 1 ' '  

level variable may indicate seasonal and/or cyclic variations in groundwater quality and these water levels 

. .. 

,I ' * . .\. . .. 
' 

. 

. 2 .  . ',_I. I .  

. .  may be useful . .  , .  for discerning cyclic effects . .  on . .  water quaiity trends. . .  

. .  

2.8 Irregularly-Spaced and Inconsistent Sampling or Analysis 
, .  . . .  

. .  . , . . .  ' i .  . .  

Data collected for trend analysis Should,ideally be collected under a consistent set of sampling and ., 

analytical procedures. Changes in sampling frequency over time may impact trend'testing: Often. this ' 
requires interpreting the data at the lowest sampling frequency. Monthly data mixed in with semiannual. ,: . ' 

. data would possibly result in the exclusion of the monthly data. Irregularly spaced .or convenience , . 
. . .  . , . !  

. .  
. .  

' sampling should be avoided. 
.. , 

b .  - .. . . .  . .  

. .  . .  2.9 Data Outliers . .  . ' . . ~  

Outliers ?e extrem?< observations which appear.to be inconsistent with the magnitudes;of the.neighboring,. . ' ' 

observations in time at a sampling location. ' Ou.tliers may be due. to data transchption errors, samples 
misidentified in the field or in the laboratory, or they may, indicate real water quality events. 

Outliers may be visually identified by .inspection of concentration versus time plots. Alternatively., formal 
statistical tests for outliers may.be run. Examples of these tests include Dixon's single outlier test; . .. 

'Rosner's two-tailed test for multiple, high or low .outliers, or 3 .  the ASTM single outlier .. test (Dixon,, 1953; 
Rosner, 1975; ASTM, 1975). Rosner's test assumes a normal distribution and requires at least 2 5  
samples. Formal testing for outliers is not suggested for postclosure monitoring. Visual identification of 
outliers from time series plots is sufficient for data review and evaluation. In nonparametric . .  trending 

. ,. i 
. .  . .  

. .  . . . . .  

: :  . . .  . .  . .  

analyses, outliers do not have a strong influence on the results, unlike in parametric analyses. . .  
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Outlying observations are suspicious and their causes should be investigated. If errors are detected they 
should be corrected, or if uncorrectable, removed from the data. If the outliers cannot be shown to be due 
to error, then they should be retained in the data used for trend analysis. This is consistent with EPA - 
statistical guidance on outlier retention (EPA, 1989). 

2.10 Types of Trends 
. .  

. .  

only tested in water quality data - step and monotonic trends. Different 
statistical methods are employed to identify each type of trend. Therefore,'an important consideration 
prior to selecting a trending method is the type'of.water quality trerid'that is expected through knowledge 
of events or through obseAation of the data. A review of the published literature indicates that monotonic 
trends .are . .  most frequent and most statisiical trending methods apply to monotonic trends. An important 
poi 

, , 

. . 

. 

. .  . . .  

, .  ave to be linear. .In fact, trends in water quality data are often . ,  nonlinear 
. .  . .  . .  . 

. , . I  (Hirsch et al., ,1991). * 1 '  . .  

A step trend can be thought of as an abrupt change in groundwater constituent concentration due to some 
event such as a groundwater accelerated action (e.g., groundwater treatment system). The statistical 
hypothesis in testing for a step trend assumes that the data collected before a specific date (or event) are 
from a different population than the data collected since that date (Hirsch et al., 1991). More specifically, 
the test compares the pre-event and post-event means or medians. 

Hirsch et al. (199 1) suggest that step trend procedures should only be used for the following two cases: 

1. When the concentration versus time data naturally group into two distinct time periods separated by a 
substantial time gap. A rule of thumb is to use a step trend procedure if the gap length is greater than 
1/3 the data collection period; or 

2. If a known event has occurred that is likely to have changed the water quality, then the concentration 
versus time record can be divided into pre-event and post-event data. 

Although monitoring locations, sampling frequencies, and analyte suites have varied, RFETS has been 
collecting groundwater quality data relatively consistently since 1986. Therefore, substantial data gaps 
are not'anticipated, and the 1'' case probably does not apply at FWETS. However, the 2nd case may apply 
at RFETS and is discussed below. 

1 . \  I- , 
A number of remediation and Site closure activities (known events) at RFETS may affect post-closure 
groundwater quality. Some of these known events are listed below: 

Decontamination & decommissioning (D&D) of buildings, tanks, and other structures has been 
on-going since 1998 and will continue into 2005. The removal of buildings built on a slab-on- 
grade may affect water quality when the slab is removed, through precipitation infiltration in the 
footprint of the former building. Building remnants, such as concrete basement walls and floors 
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. .  

0 

. .  

left in place, may also impact adjacent groundwater quality if the remaining portion of these I 
structures is contaminated; 

'The Water Treatment Plant (WTP) is scheduled to be shutdown during fall of 2004. Water for 
drinking and sanitation will no longer be imported to RFETS through ditches and pipes. This 
event will decrease the volume of water seeping from the ditches to the shallow groundwater and 
the water volume discharging to South Walnut Creek from the WTP. Thus, with less imported 
water, local groundwater quality will have a greater impact on gaining reaches of the creek where 
groundwater emerges at hillside seeps or discharges directly to the creek. The diminished volume 
of surface water may also effect groundwater quality beneath losing reaches of the creek; 

~ 

B 
E Removal of asphalt parking lots and roads may locally increase precipitation infiltration; 

After the buildings are removed, regrading of the land surface will potentially change patterns of 
surface water runoff and precipitation infiltration; 

Removal of contami'nan't sources such as the free-phase ckhon tetrachlohde at MSS'I 18.1 (south . : 

of B-77 1) should slowly 'improve groundwater,quality in and.downgradient'of that area. ' During' ' :. 

1996, there were'similar Source vals of VOC-contaminated soilat the T-3 and'Th trenches " 

located east of the Industrial Area (IA). Another source removal example.isthe draining aqd" ' 

. .  . .  . .  
sludge removal at the Solar Evaporation Ponds. (SEP).during'1995; and , 

. .  

Five groundwater collection andxreatment systems have been 'installed at.RFETS to date. These. ' . 

systems are ,expected to positively impact local . .  groundwater quality, (K-H, 2002): Groundwater 
. .  . . ..' 

collection and treatment systems were,installed at the following locations:. . 1 .  

. I .  

, .  
. .  

o 

o PresentLandfill seep (former OU7) from May 1996.to]October 1998 a granular-activated . . 

881 .Hillside (former OUl) in 1992 to treat.VOCs and radionuclides; 

. . . ,  

carbon (GAC) system operated toremove VOCs. -Since October 1998 a passive aeration 
- . system has been used; . .  .. 

. .  

o .Mound Site Plume Treatment System was installed.during 1997 and 1998 to remove 
. ~. 

. VOCs and radionuclides; 

. o East Trenches Plume Treatment System was completed during September. 1999. 1t.treats 
. .  

. .  . .  -VOC-contaminated groundwater;' and ' 

. .  . .  

o Solar Ponds Plume Treatment System was also completed in September 1999. It treats 
groundwater contaminated'by nitrate and uranium isotopes. ". . . 

. .  

Spatially, the above Iremediation and closure activities may positively or'negatively -affect ,local.IA 
groundwater quality: .Temporally; these activities have occurred over many years: Because groundwater . . 
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migrates slowly it could take years to see the effects of these accelerated actions at downgradient wells. 
Different contaminant flowpaths have different lengths, hydraulic conductivities and travel times, 
therefore potential effects would likely be detected downgradient during different years. Groundwater 
treatment activities began with OU1 in 1992 followed by the other groundwater treatment activities 
between 1996 and 1999. Building D&D and other facility removal activities have occurred since 1998 
and will extend into 2005. Site closure has no relationship to contaminant travel times; thus, no single 
time event is likely to delineate preclosure effects from potential post-closure effects on a Sitewide basis. 

It appears that the only way to apply step trend testing on a Sitewide basis would be to assume that 1993 
through 2005 is a large data gap, transition period, or step. This approach would compare the 1986 
through 1992 groundwater quality with data collected after 2005. However, it is thought that little useful 
information would be gained from using this approach for postclosure monitoring at RFETS. 

The main objective of postclosure monitoring and trend testing is to ensure public safety and protect the 
environment. Another objective is to demonstrate that groundwater goals are being achieved. Monotonic 
trend testing should be performed as a method of confirming that these objectives are being met. Water 
quality trends are not always linear through time. A recent evaluation of the biodegradation of VOCs in 
groundwater at RFETS indicates that VOC daughter product concentrations may locally increase before 

. 

eventually decreasing (K-H, 2004b). 

2.11 Period of Record 

Water quality data are usually collected repeatedly and systematically over a time period that spans years 
or decades. At Rocky Flats, this period of record for groundwater quality data for some wells extends 
approximately 18 years from 1986 to the present. Time series plots of groundwater quality data collected 
at RFETS are usually nonlinear, and may suggest upward trends during some periods and downward 
trends at other times. Thus, an important consideration in trend analysis is the time extent of the data to 
be tested for trend. Should the entire period of record be tested, or just data collected postclosure? 
Using all data gives the most information about historical water quality trends, but we may only be 
interested in recent trends at locations that monitor potential surface water impacts. This issue will be 
addressed in a future plan for post-closure monitoring and data assessment. 

Recommendations regarding minimum number of data required for trend analysis vary in the published 
literature. The minimum number of data that can be used by some trending methods that evaluate 
seasonality effects is fourdata points per season. That implies collection of at least four years of 
groundwater,data before trend analysis can start. Because of potential climatological effects the data 
record for trend analysis should include a representative selection of wet and dry years as well as normal 
water years. 
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3 METHODS OF ASSESSING TRENDS 

Trend assessment is a field of statistics and it has an extensive-scientific literature. Numerous trending 
methods have been proposed, but not all are applicable to water quality data. This section reviews the 
literature and briefly describes trending methods ,that have been applied to 'water quality data. 

3.1 Summary of Graphical and Statistical Trend Analysis Methods 

Published literature was reviewed to determine which statistical tests have been used for detection of 
trends. Methods for identifying step trends are listed below with an associated reference to an author who 
discusses the test andor has applied the test to water data. 

0 Step Trend Analysis - Parametric 

o Two sample t-test (Iman and Conover, 1983). 
, 

0 Step Trend Analysis - Nonparametric 

o Mann- Whitney or Wilcoxon Rank Sum test (Bradley, 1968). This test is used with the 
Hodges-Lehmann estimator of trend magnitude (Hodges and Lehmann, 1963). 

0 . Monotonic Trend Analysis '- Parametric 

0 

' 0  

0 

Regression Analysis, is usually run as linear regression for monotonic trend (Montgomery 
and Peck, 1982). Linear regression fits a line to the data and estimates the magnitude of a 
potential trend as the slope of the line. An hypothesis test (e.g., a t-test) may be run to 
decide if the slope is non-zero at a given level of confidence. This t-test can be 
misleading when the data are nonlinear, nonnormal, serially correlated, or there are 
seasonal or climatological effects (Hirsch at al., 1982). 

Tobit estimation (Hirsch et al.;1991). This rather complex method fits#a multiple 
regression model to the data. The model attempts to account for time trends, season, 
discharge (for surface water data), and other variables. The model is fitted using the 
method of maximum likelihood estimation (MLE). 

Combined Shewhart-CUSUM Control Charts (Gilbert, 1987, p. 207; IDT, 1998). 
Control charts are a graphical tool commonly used in industrial applications of 
statistically-based process control. Control charts are based on parametric statistics 
derived from historical data. A control chart could be developed for each analyte-well 

, 
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. .  

pair if there are sufficient detections of the analyte in the-historical g;oundwater .' : '  

monitoring data. Upper control ,limits are established, and future concentration 
.measurements"are plotted on the chait.for comparison tothose limits. 'Control'charts 
allow individual "out of control" measurements to be recognized whether due to an " 
erroneous outlier, or any type of trend. 'They are not hypothesis tests for the presence of. 
trend, nor do they estimate the slope of a monotonic trend. 

' . I  

0 Monotonic Trend Analysis - Nonparametric 
I 

:. o Mann-Kendall testfor trend (Mann, 1945; .Kendall,' 1975). The Mann-Kendall test is 
functionally identical to Kendall's tau test for correlation . .  (Kendall, 1975). The test is 
based,on the number of times that the data increase or'decrease when data values are 
compared to the values that follow in time. The magnitude of the trend is given by the 
slope estimation method of Sen (1968). This test is insensitive to outliers and can be 
used with irregularly spaced data or small numbersof data (Gauthier, 2001). The Mann- 
Kendall test can also be used on deseas.onalized data. The Mann-Kendall test is affected 
by serial correlation and can yield incoqect results when data arestrongly dependent (El- 

I 
1 ', . 

.. , 

. .. . 
. .. 

.. 

I Shaarawi and Niculescu, 1992). 

Seasonal-Kendall test (Hirsch et al., 1982). The Seasonal-Kendall test has the advantage 

. < \ -  ' *  , 

o 
of removing potential seasonal effects without trying to model their magnitude and 
variation: It doesihis by modifying Kendall's tau test to test each season separately. The 
individual test results are then combined into an overall test result. This test is robust , 

. . 

against seasonality, non-normality, presence of censored . .  data, or missing . .  values (Hirsch .. '#. 

. I  

and Slack, 1984). However, it is noted that this test 'is not robust against sehal . .  

. .  1. , correlation. The Seasonal-Kendall Slope Estimator:is an associated.method of estimating 
the !magnitude,of the trend'(Hirsch et al.,. 1982). . . 

. ,  , 
. .  

o Modked Seasonal-Kendall test (Hirsch and Slack, 1984). This,test .is a modification of 
. .  .. . . .  5 . '  

. .  . .  / .  . . .  

the Seasonal-Kendall to make it'more robust against serial correlation. The modified test 
is more exact, but much. more.complex computationally. This t test . ' . , ' : .  has also been called 
the Seasonal Kendall test with correction for serial co n (Harcum et al., 1992). The 

: modified test requires large.numbers of data with at.1east I O  years of seasonal record. 

.i . . .  . .  . .  

. . . 

I 
U 
)I 

o Spearman's Rank Correlation Coeficient - Gauthier (2001) describes monotonic trend 
testing using Spearman's correlation coefficient (often called S p e h a n ' s  rho). This test 
is insensitive to outliers and can be used with irregularly spaced data or small numbers of 
data. The Spearman test is easier to calculate than the Mann-Kendall, but this advantage 
is slight because of the almost universal availability of personal computers. El-Shaarawi 
et al. (1983) accounted for seasonality in river water by applying the Spearman method to 
individual monthly means. The "Daniels test for trend" is also based on Spearman's rho 
(Daniels, 1950; Conover, 1999). 

I .  
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o Cox and Stuart test for trend (Cox and Stuart, 1955; Conover, 1999, p. 169-176). This 
test is a variation of the sign test and is used to detect any type of nonrandom pattern. 
Given a sequence of concentration data, the test pairs the later numbers with the earlier 
numbers and then performs a sign test on the pairs. Conover (1999, p.323) observes that 
tests based on Spearman’s rho or Kendall’s tau are considered to be more powerful than 
the Cox and Stuart test. 

. .  

It is possible to apply the above tests to water quality data in a variety of ways. Numerous procedural 
variations are found in the literature. 

Use of Exogenous Variables in Trend Analysis 

nous variables may be used to increase the power of many trend testing methods. This is based on 
cept that the power and efficiency of any procedure for,detecting trends and estimating their 

magnitude is increased if the variance of the data can be decreased (Hirsch et al., 1991). The use of 
exogenous variables with the Mann-Kendall test for trend is described by Alley (1988). Alley observed 
that exogenous variables could also be used with the Seasonal-Kendall test. 

An example of this approach is based on the observation that the concentrations of major cations and 
anions in river water, usually decrease as the river’s discharge (volume of water per unit time) increases. 
Therefore, when seeking concentration versus time trends in surface water, investigators have often found 
it desirable to remove the effects of discharge (the exogenous variable) prior to concentration versus time 
trend testing. This can be done by regression modeling of concentration versus discharge. Temporal 
trend analysis is then performed on the residuals of the concentration-discharge regression. When trend 
testing surface water data, it has been observed that seasonal effects can remain in the data even after 
discharge effects have been removed (Hirsch et a]., 1982). 

It is important to note that if discharge versus time data show a trend, then the concentration versus 
. discharge residuals do not necessarily indicate a concentration versus time trend (Hirsch et al., 1991). A 

popular modification of this technique in recent literature is to replace the regression analysis with a 
LOWESS smooth. LOWESS is an acronym for locally weighted scatterplot Smoothing (Cleveland, 1979). 

I It was noted in Section 2.6 that groundwater levels in a shallow unconfined aquifer directly reflect the 
local net infiltration rate at the point of water quality measurement. Therefore, measured deviations from 
thelmean groundwater elevation (or mean depth below top of casing) provide a promising exogenous 
variable for use in identifying groundwater quality trends. This exogenous variable may indicate seasonal 

‘ and/or cyclic variations in groundwater quality, and it may be useful for removing cyclic effects (both 
climatic and seasonal) from water quality trends at RFETS. Interestingly, use of water-level deviations 
to remove cyclicity has not been noted in the literature. The procedure would regress concentration 
versus water level deviation data. Analysis of concentration trends through time would then be 
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performed on ttie residuals of the concentrationdeviation regression. This analysis is performed in 
Section 4.7 using RFETS data. 

3.3 Removal of Seasonal Variability 

Seasonal effects on water quality can be minimized in several ways. .In parametric trend testing, the 
effects of an annual cycle have been modeled by trigonometric functions of the time of year (Hirsch et al., 
1991). However, it is unlikely that seasonal groundwater quality or water levels follow a smooth 
trigonometric function at RFETS. 

EPA (1989) provides a method of removing seasonality ,from a set of.groundwater.concentration data. .. . 

This method is implemented in the software program WQStat Plus (IDT, 1998). Thisprocedure works.by 
computing a "grand,mean" concentration from all of the available data .for a .given analyte and well pair. - 
Individual seasonal .means arethen computed for each season for the analyte .and well. ..Finally, the ::. 

appropriate seasonal.mean (IDT, 1998). ' 

The effects of seasonality could also be removed by modifying the EPA (1989) parametric seasonality 
correction to a nonpiirametric correction. A .nonparametric correction'for seasonality: would 'substitute the 
grand median and seasonal median fortheir respective mean values: 'However, a nonparametric ~ , 

seas,onality coirection was not used . .  in'this present report .as this correction is not currently implemented in 
the WQStat Plus software. 

It is also worth noting that the water quality,data are not adjusted for, seasonality,prior t o  applying the. 
Seasonal-Kendall test. The nonparametric Seasonal-Kendall test removes the effects of :seasonality ., 
without modeling it. ... It does this by performing thelrend test on each of the seasons individually.-.;Tlie: 
test statistics are then summed across all seasons. The details of this test are found in Hirsch et al. :.I 

. 
' 

. 

. .. :: 

individual concentration values.are deseasonalized by adding the grand mean and' then subtracting the . .  
.. . ' ,. . .  . .  . .  

1 .  

. .  
: .. 

.. 

. .  , .  . .  ; . ,  i .  

. 

. .  . .  
. .  . . .  . .  . .  

(1982). . . 

Many of the investigators who have studied seasonality in natural waters ,have used monthly water ;. . . 

sampling intervals (e.g., El-Shaarawi et .ai., -1983). .Limited. monthly groundwater quality-data we 
available at RFETS. A small number of RCRA wells have .been sampled quarterly at RFETS, while most 
other groundwater monitoring is -performed semiannually. Thus,,.RFETS, generally lacks. the: high ~ .: ' 
sampling frequency data desirable for modeling seasonality. However, biannual.sampling during 'the'wet 

. .  . .  

, :. ! 

and dry seasons may exhibit seasonal effects 'and should be evaluated. ' .  I .  . 

. .  . .  

:: I . .  . ,  . . .  . .  

5 '  3.4. Trend Analysis with Censored Data . . .  

. .  . .  
It was mentioned earlier'that censored.data make parametric tests less accurate than would be ideal. A ' 

parametric method of detecting trends in.censored data is called "Tobit estimation" (Hirsch et all; 199 1). 
This involves fitting a complex multiple regression model to the data that'accounts for- time, discharge, 

. .  . :, . . . '  
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season, and other variables. The concentration data are often log transformed to improve the fit of the 
model. 

The nonparametric Seasonal-Kendall test and Rank Sum test may be used with censored water quality 
data. However, the raw concentration data must be used. The data cannot be adjusted for stream 
discharge or change in the groundwater table. This is because residuals cannot be computed for censored 
values from either regression analysis or aLOWESS smooth (Hirsch et al., 1991). 

Sens’ estimate of trend magnitude is associated with the Seasonal-Kendall test. The magnitude of the Sen 
slope will be less accurate as the percentage of censored data (nondetects) increases, however, its sign is 
more robust. 

3.5 

The best way to deal with serial correlation may be to plan the water sampling program to minimize its 
Occurrence in the data. This might be done by using semiannual or quarterly sampling, rather than higher 
frequency sampling such as monthly sampling. If seasonality is to be modeled, then quarterly sampling 
may be the best compromise. However, modeling seasonality is likely to be only of academic interest for 
groundwater quality data at RFETS. 

El-Shaarawi and Niculescu (1992) found that the Mann-Kendall test statistic is strongly influenced by 
statistical dependence among the data, and the test can yield incorrect results when the dependence is 
strong. If autocorrelated data are suspected, the modijied Seasonal-Kendall test can be used to correct for 
serial correlation (Hirsch and Slack, 1984). Note that the ordinary Seasonal-Kendall test is affected by 
serial correlation. 

Because historic groundwater quality data at RFETS has been collected at several sampling frequencies, 
“data collapsing” is another method to reduc’e serial correlation. Data collapsing of an original time series 
reduces the number and frequency of data points by reducing it, for example, from monthly to quarterly 
or annual means. Various methods of data collapsing are discussed by Harcum et al. (1992). For 
example, it can be implemented by subsampling or by selecting the median value of the data that group 
within the newly defined sampling interval. 

Trend Analysis with Serially-Correlated Data 

3.6 Selection I- of Candidate Trending Methods for Testing 

Recommendations presented in the published literature were used to select a subset of applicable trending 
methods as discussed below. These candidate methods were then tested and evaluated inSection 4 using 
groundwater data collected at RFETS. 

Step trend procedures’should only be used when, 1) theie is a known event that might result in a change 
in water quality, or 2) when the water quality data is naturally broken into two distinct periods with a long 

J 

I 

3-5 
Review Exemption: ,CEX-105-01 

-. 



. .  

04-RF-0 1 164 

gap between them (Hirsch'et al., 1991). Groundwater monitoring data have been .systematically collected. 
at RFETS since 1986, and there is no distinct data gap in the quality record.since that date. As discussed 
earlier, groundwater remediation and closure activities have created numerous events that could 
.hypothetically impact groundwater quality in local areas of RFJ3TS. However, these events are spread out 

methods on a Sitewide basis for postclosure monitoring. Thereforemonotonic trend testing.is 
recommended for post4osure monitoring; and methods of monotonic trend analysis will be considered in 
the remainder of this report. 

' Hirsch et al. (1991) published a lucid review 'of wat& quality trend 'testing methods. They also performed 
. a Monte Carlo analysis that compared the perfopmince of parametric and nonparametric methods. When ; 
there were small departures from normality, or small sample sizes, the nonparametric methods showed 
modest advantages in efficiency and power.over parametric methods (Hirsch et.a1.,1991).: They. .. . .', 

. . 

I 
I 

8- . s 
. ' i' 
.' :: 1 

~ ; .  I 

' 

. 
both spatially.and temporally, and there does not appear to be a practical means of applying step trending . .  

. .  , :  . . . .. 

, ' 
. . .  

. .  . . I  . .  

. .... 

_. concluded'that nonparametric procedures have only small disadvantages in power. when the data are '. . . .  , 

normal,'.modest advantages when. the data depart slightly from normality, and 1arge.advantages whenthe 

used nonparametric trending methods in their water ,quality .investigations at the USGS: _ .  . . .: 

. .  . 
data are highly rion-normal. Because water quality -data are frequently non-normal, they. have routinely 

, .... . .  , 

. .  . .  ..:: . . ,  ...I 4' 

' Hirsch et al. (1982) compared monotonic trend test performance. Their,results show that. when data are 
skewed, have cyclicity, or autocorrelation, the Seasonal-Kendall test is preferred to ordinary linear 
regression, or to seasonal regression, and their associated t-tests. 

Gilbert (1987) devotes two chapters of his widely used statistics text to water quality trending issues. 
Gilbert reviewed the literature on trend testing methods and concluded that nonparametric methods were 
the most useful for trending environmental data. Gilbert published source code for a computer program I 

to perform nonparametric trend testing (Gilbert, 1987, Appendix B). 

Gibbons (1994) also reviewed the statistical literature on water quality trend testing. Gibbons concluded 
that because of data issues such as,outliers and nondetects, nonparametric trend analysis is most 
reasonable for testing groundwater quality data. 

Harcum et al. (1992) observed that many investigators have moved to the use of nonparametric trend - 
testing. However, nonparametric methods still assume independent, identically distributed error terms, 
and this assumption may be violated by seasonality or serial correlation. Harcum et al. (1992) compared 
the power of four widely used nonparametric.methods,while varying the properties of the test data. They 
varied sample size, serial correlation, fraction of missing values, seasonality, and distribution. Their 
recommendations for the best trend test'depend on the'length of the data recard and the percentage of 
nondetects. If >10 years of monitoring data are to be trended with "no" serial correlation, and 4 0 %  
missing values, they recommend use of the Mann-Kendall test on deseasonalized monthly data. For >10 
years of serially correlated data they suggest the Modified Season-Kendall test. If a single test is to be 
selected for uncorrelated data at all record lengths they suggest the Seasonal-Kendall test. When there are 

I 
1 
8 

I .  
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large proportions of missing data (A0 or 50%) they suggest using median collapsing of the sampling 
frequency to a longer interval. 

Based on the above recommendations and the writer's experience with the non-normality of groundwater 
quality data, nonparametric, monotonic trend testing procedures will be selected as candidate methods for 
further evaluation. The nonparametric candidate trend analysis methods will include: 

& '  0 Mann-Kendall test for trend on unadjusted concentration data; 

0 

? 0 

Mann-Kendall test for trend on deseasonalized concentration data; and 

Seasonal-Kendall test for trend on unadjusted concentration data. 
< -  

Sen's slope estimation method will be used along with the Mann-Kendall testing to estimate the 
magnitude of statistically significant trends. The Seasonal-Kendall Slope Estimator (a version of Sen's 
method) will be used to estimate the slopes of trends identified by the Seasonal-Kendall test. 

Although they are parametric, and are not candidate methods for trend analysis, Shewhart-CUSUM 
control charts are useful visual tools for interpreting groundwater data. Visual tools that will be applied to 
WETS groundwater data include Shewhart-CUSUM control charts, seasonality charts (as implemented 
by WQStat Plus), LOWESS smooths, and time series plots. A number of auxiliary statistical procedures 
will also be used in evaluations of data properties, e.g., normality testing. 

- 

*_:. .r. ,., .,.:::: L 
. .  

.... 
' 'a<- ., '. .p:: 
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Candidate trend analysis methods were selected in the previous text section. These methods will be tested 
to see how well they work on groundwater quality data collected at RFETS. However, software must first 
be selected to apply these methods. 

4.1 Software Selection for Trend Analysis 

Many commercially available statistical software programs are capable of performing some or all of the 
candidate trend analysis methods. Because normality, serial correlation, and seasonality can effect the 
selection of a trending method, it is desirable if the software can also perform statistical tests for these 
data properties. Note that software products are identified for informational purposes only, and these 
products are not endorsed by DOE, K-H: or U R S  Corporation. 

WQStat Plus (copyright Intelligent Decision Technologies, Inc.) was the main statistical program selected 
for the present data evaluations. This program is easy to use, has convenient data deseasonalization and 
detrending features, and can perform Mann-Kendall, Seasonal-Kendall: and Sen’s slope estimate. 
WQStat Plus was also used to test the data for normality (Shapiro-Wilk test), serial correlation (Rank Von 
Neumann test) and seasonality (Kruskal-Wallis test). 

Conveniently, WQStat Plus allows the user to define up to 12 seasons and their starting dates. This 
feature was used to compare trend testing results for groundwater sampled semiannually, quarterly, and 
monthly. 

I 

A Fortran program called TREND was also used to evaluate data for this report. This code was co- 
developed by Gilbert and D.W. Engel and its source code is published in Gilbert (1987, Appendix B). 
Gilbert concluded that nonparametric methods were the most useful for trending environmental data and 
he developed TREND as a convenient means of applying these tests. An advantage to the reader is that 
in his text Gilbert interprets the results of processing four test data sets through TREND. 

TREND was edited as necessary to compile under Microsoft FORTRAN, version 5. The final code 
modifications in version TREND3 are documented in comments within the source code. Proper 
functioning of TREND3 was verified by its ability to read the four test data sets of Gilbert (1987) and 
produce output that agrees with that discussed in Gilbert (1987). Data input to TREND3 can be exported 
from Excel as simple text files. 

TREND3 does not have the diversity of statistical methods available in WQStat Plus. It supports the 
Mann-Kendall ‘test, the Seasonal-Kendall test and Sen’s slope estimates. The program can also test for 
homogeneity of trend among a set of different wells; for example, wells that might intersect a large VOC 
plume. The homogeneity feature was not used with the current data. 

4- 1 
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A useful .freeware program for LOWESS smoothing is called Robust.Fit. This cobe was developed by 
W.J. Heitler of the University of St. Andrews in Scotland. The code is based on the LOWESS methods of 
Cleveland (1979) and comes with example data. Robust Fit.has very flexible input. For example,' iata 
can be.pasted into Robust Fit from the Windows' clipboard. On'output Robust Fit allows the user tocopy 
its scatterplot graphics to the clipboard, and to save the fitted smooth as a file for further analysis. . .  

I 
i 
1 
P 4.2 Data Selection and Processing 
- - 

The objective is to.test the selected trend analysis methods. on g;oundwater quality data representative of 
groundwater conditions'at kFETS. This testing should reveal the'strengths and shortcomings of the '. 
methods. By illurriinating various data issues, the testing' should assist -RFETS i n  developing a'practical 
statistical methodology for interpreting the posti-dlosure water quality data. 

a 
'I . In order to "stress test" the trending methods, analytical data were selected which included many.of the . . . . . .  

. .  . .  
, : '  . .. ' 

. data .issues (e.g., multiple detection links) described 'inlsection 2. The following bullets 'describe the&ta 
. . . .  . .  

selection strategy;process, and how the 'data were normalized. ' 

. . . . . .  . .  . . . .  
c . .  

' 0  

Wells .were selected that were. screened'in the%pper hydrostratigraphic .flow system (UHSU) at. '' 
RFETS. .Most of the wells of interest were 1ocated.in or near the Industrial,.Area (IA). Two wells 
were located near the Present Landfill, which is located north of the IA. 

Analytes were chosen.that are potential postclosure groundwater'C0Cs.-: Selected: VOCs -ahd 
nitratehitrite are likely post-closure COCs. .Therefore, one well was chosen that monitors a . 

plume of TCE in the IA. Another well was selected that has low concentrations of nitratehitrite , 

in alluvium of Norih Walnut Creek. 

'Field-filtered W-234 data were' retrieved to test the methods' performance on radiochefistry data,. 
which may.include zero and negative activities.. ' 

The trace, semi-metal arsenic was retrieved because it tends to have a large percentage of ' 

nondetect data, and may have multiple reporting limits. Only field-filtered arsenic .data were. 
examined. . 

Data evaluated in this report were retrieved. fiom the Groundwater Superset. database, which was 
derived from the Soil and Water Database (SWD). Groundwater analytical results for selected 
analytes from each well were uploaded into a local database. Water level measurements made at 
the time of sampling were also uploaded: 

The full.period of data collection was.retrieve&'for each selected analyte and well, and 
incorporated into the working data set. . ' 

. .  . . .  . . .  . .  . .  

. .  

. . . .  . .  . .  .. ' .?. 

! ;  . . . .  

, .  . .  .~ 

r .  . . .  

. . . .  . . . .  . . .  

, .  

. ,  . .  , .  - .  
' 
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,' 
0 Data for primary water samples (REALs) were retrieved. These data include target analyses, re- 

extractions, and dilutions made in the laboratory. Records rejected during validation (R) or 
verification (R 1) were excluded from this evaluation. 

Field duplicates, equipment rinsates, and all laboratory QNQC records were not retrieved or used 
in this investigation. Surrogate compounds and tentatively identified compounds were not 
retrieved. 

Database queries were conducted to examine the data and to identify potential problems such as 
incorrect concentration units, or concentration unit mismatches. When multiple concentration 
units were found the units, results, and detection limits were standardized to a single unit. 

Nondetect results were identified by the presence of a "U' result qualifier, and/or a "UJ" 
validation qualifier. Because numerous codes are found in these data fields the U values 'were 
detected in queries that use "wildcard expressions". 

Nondetect concentrations were used in two different ways. In the later discussion of method 
evaluations using the WQStat Plus program, nondetects were used at face value (i.e., at the 
reporting limit). WQStat used Cohen's adjustment to means and standard deviations to 
compensate for nondetects. In the later evaluations using TREND3 nondetects were used at one 
half the reporting limit. 

Formal statistical testing for outliers was not performed, although the data were examined 
visually for potential outliers. 

0 

5 , I .  . 
0 

0 

0 

An objective of this investigation was to compare the performance of trend testing methods on 
seasons of different lengths. For example, the Seasonal-Kendall test is described in the literature 
on the basis of 12 monthly seasons. At RFETS we wish to test it using 2 semiannual seasons (for 
post-closure monitoriug), and with quarterly seasons (for RCRA groundwater monitoring). ' 

In creating the test data, seasons were defined on a calendar basis for simplicity, rather than trying 
to match the precipitation cycle at RFETS. Quarterly seasons start on January Is', April lS', July 
lS', and October 1". Monthly seasons start on the ls* day of each month. Semiannual seasons 
begin on January 1" and July 1". 

The master set of retrieved groundwater quality data was exported from Access as an Excel 
spreadsheerand is found in Appendix A. 

In order to create seasons of different lengths, the Appendix A spreadsheet was copied to three 
daughter spreadsheets in Appendices B, C, and D. These daughter spreadsheets were edited as 
follows to create semiannual, quarterly, and monthly data. 

2 
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' : 
'Appendix A often contains .multiple data records per sampling event 'for a given wellLanalyte 
.combination: 'Reasonsfor this were discussed in Section 2.6. -For trend analysis a.single data 
record is desired per combination of well; analyte, calendar year of sampling, and season. After 
sorting each daughter spreadsheet by  well, analyte, and sample date, numbered, seasons.were 
defined. Semiannual seasons,were defined in the data of Appendix B. Quarterly seasons were 
defined iri'the data of Appendix C, and Monthly seasons were .defined in Appendix D. 

PseudoLrandom subsampling of the daughter spreadsheets in Appendix B, C, and D, was 
performed by'manually selecting one record to represent'eadh season, when multiple records were. 
present.. This was done without the bias of looking at tlie.reported concentration,'result qualifier;. . 
or.validation fields. ' Pseudo-random sampling was considered sufficient for creation of test data, 

d 
I 
y 

. ' 

. 
. 

. .  ' 

but more rigorous random sampling designs should be ,employed if subsampling is .used during . . .  
. ~. 1 

. . .. , . .  

. .  
. .  . . .  , .. . . 

. I , . .  
: post-closure monitoring. . . .  . .  

Working data for trend analysis were exported from the Excel spreadsheets of Appendices B, C, 
and D. The spreadsheets were exported in various file formats to be readable by the statistical 
software. WQStat Plus, for example, has a data file translator that reads tab delimited text files '8 

' I  . 
containing the relevant data fields. . E  

1.. 
* I  

.; . .a . _ . .  . 4.3 LOWESS Smooths of RFETS Groundwater Data 

Program Robust, Fit,(,Heitler, 2004) was used to plot the analyte concentration versus, time data of the. 

assist the,visual identification of trends and to help identify statistical issues (data problems). The 19 
plots created by Robust Fit follow later in this section. 

RFETS . .  groundwater data of Appendix A. Robust Fit also generated a LOWESS .smiioth or:curve to. . . .  
- 

. .  .. , .. . 
. . >. . .  

' 
' .  

LOWESS was developed by Cleveland (1979). .Inspection of the plots is. intended to,show 'how .. . . 
I .  

' challenging trend detection can. be in real-world data. The ,widely varied shapes of the pl,ots fndicate that . .  

trends are frequently nonlinear,.and tendencies may reverse direction one or more times over the period of, 
record.' . .  I .  

f '  

Other properties of the data that may cause difficulties for trend detection methods and software are noted 
here. Outliers are seen in some of the plots (e.g., Figure 4-1 1 nitratehitrite in We11.70193). Periods of 
missing data are noted in the following plots: Figure 4-16 arsenic in Well B206989 (8 years missing), 
Figure 4-18'PCE in Well P114889 (5 years missing), and Figure 4-13 VC in Well P115689 (5 years 
missing). Many of the data sets in Appendix A contain multiple data values per season, regardless of 
whether a season is defined as a month, quarter, or half-year. Multiple data points in a season are a 
problem for some statistical methods and computer programs. Multiple data points originate through 
changes in sampling frequency (e.g., quarterly to special monthly sampling), or when a laboratory 
performs a dilution or reextraction of a sample. Some trend testing software can use the'mean or median 

I 
. a  

of the multiple records in a given season. :' ' 'I 
: 3b 4-4 c 'Review Exemption: CEX-105-01 
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Another problem is that the 1.7 year period of record for U-234 in Well P415889 (Figure 4-19) is 
probably too short for meaningful trend testing. This is because: 1) groundwater moves slowly and its 
chemistry tends to change slowly, 2) less than three or four years is considered too short to characterize 
seasonal effects, and 3) multiyear climatic effects have not yet been adequately determined. 

Robust Fit (and some trend testing software) cannot discriminate between detect and nondetect data. 
Therefore, the plots were made by including nondetect concentrations at one-half the detection limit. 
Input data are listed in Appendix A. 

The smoothing algorithm used either 1" order or 2nd order polynomial smoothing as noted in the caption 
below each plot. It is important to note that in LOWESS, a 1'' order smooth usually does not yield a 
straight line through the data. LOWESS is not a simple linear regression line fit. Second-order 
smoothing is usually more rounded than 1" order smoothing. 

The caption notes the number of data values used in the plot as "n." Finally, the "half-window'' is a 
LOWESS fitting parameter. It represents the number of points on either side of the point being smoothed, 
which are included in the polynomial fit. Large values of the half-window give smoother plots at the 
expense of loss of small detail. 

I 

I 

User control over axis labeling is very limited in the plotted output of Robust Fit. The vertical axis 
always denotes concentration in pg/L for non-radionuclides, or activity in pCiL for radionuclides. The 
horizontal axis of these plots is always elapsed time in decimal years since the start of water quality 
monitoring for a given analyte - well combination. 
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Figure 4-1 Smooth of Dissolved Arsenic Concentrations in Groundwater at Well 03991. 

I 

li 

I 

T 

2 
Smooth performed over 12 years of record (N = 27 data points, 2"d order smooth, half-window = 9). 
Although a nonlinear trend or cycle in implied, 89% of the data are nondetect and thc range of the vertical 
concentration axis is only 2.3 pg&. Therefore, it's not clear if there is a real cycle or trend above the 
sampling and analytical variability. Well 03991 is located in the northeast trenches area south of Pond 
B1. I 
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Figure 4-2 Smooth of Carbon Tetrachloride Concentrations in Groundwater at Well 06091 

Smooth performed over 12 years of record (N = 39, 1'' order, half-window = 9). Both the data and the 
smooth indicate that CTIconcentrations exhibited an increasing trend for the first 8 years, then started to 
attenuate. Well 06091 is located in the East Trenches area. 

. 

1. I 

I 
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Figure 4-3 Smooth of Nitratemitrite (as N) Concentrations in Groundwater at Well 06091 

Smooth performed over 12 years of record (N = 38,2"* order, half-window = 8). Well 06091 is located 
in the East Trenches area. ' 
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Figure 4-4 Smooth of Uranium-234  activity in Groundwater at Well 06091 . 

Smooth performed over.12 years of record (N = 36, 2"d order, half-window = 9). Visually it is difficult to 
decide if there is an upward trend. Well 06091 is located in the East Trenches area. 

Review Exemption: CEX-105-01 
4-9, 

-. 



1 04-RF-0 I 164 

- .  . .  . .. 

r - - - -  

t 

.,-- 

I -  

Figure 4-5 Smooth of Uranium-234 Activity in Groundwater'at Well 10194 

Smooth performed over 9 years of record (N = 24; 1'' order, half-window = S)'anh Shows a decreasing '.'. 
trend. Well 10194 is located in the-East Trenches area. , ,  : . ~  , . . ' . .  I ! . . ' ! .  ', , , ... ,.: c .  

' I  . .  .. 

'I 
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Figure 4-6 Smooth of Chloroform Concentrations in Groundwater at Well 23296 7 ,  

.Smooth performed over 7 years of record (N = 31, 1" order, half-window = 9). The three data points in 
the middle of the plot appear to be a real increase in CF rather than outliers. About 23% of the data are 
nondetect. Well 23296 is located in South'Walnut Creek and west of Pond B3. 

L13 I 
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Figure 4-7 Smooth of Methylene Chloride Concentrations in Groundwater at Well 23296 * ,' I 

Smooth performed , -  over 7 years of record (I$ = 3 l , l ,"  order, half-window = 6). Similar to the previous 
CF smooth, the data points near the middle of this plot indicatereal increases in MC concentration. 
Actually, 74% of the data are nondetect with some.elevated detections. Well 23296 is located in South. , 
Walnut Creek and west of Pond B3. 

44.:. 
4-12 
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Figure 4-8 Smooth of Trichloroethene Concentrations in Groundwater at Well 3586 ' 

Smooth performed over 9 years of record (N = 68, lst order, half-window = 14) and shows the attenuation 
of TCE to the detection limit. Forty seven percent of the data are nondetects, mostly at the lower right of 
the-plot. Well 3586 is located just north of the Mound Site plume groundwater treatment system, which 
was installed during 1997 - 1998. The midpoint of the x-axis is 1994 so the decline occurred prior to the 
treatment system. 
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. ,  

I .  

. .  B i. 
. . .  . .Figure 4-11 Smooth of NitrateNitrite (as N) Concentrations'in Groundwater.at'Well7.0193 ' '.. . '  \'.' f' . . .  . 

Smooth performed,over 1 1 years'ofrecord shows a 'single laige .outliersuperimposed Onja slig8t.upwar&!. 
.trend (N = 36, lst order; halfiwindow.= @':!Note how .the.smooth',ignores 'the.%outlier. iWell~70193.is.a'- '. 

, ~ . :_. : ,. RCRA (upgradient) groundwater monitoring well at ,the Present !Laridfill. . ' . : .  . . . . , .  ... I : : 
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Figure 4-12 Smooth of Uranium-234 Activity in Groundwater at Well B210489 

. .  
. .  , . .  . . 

. . ._ 

Smooth performed over 12 years of record (N = 33, 

author's opinion, that maximum is not noticeable to the naked eye if the smooth were absent. B210489 is 
located east of the former Solar Evaporation Ponds (SEPs). 

order, half-window = 8). First and 2"d order 
, smooths of this data suggest an activity maximum exists after about five years of monitoring. In the 

, 
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Figure 4-13 Smooth of Vinyl Chloride Concentrations'in'Groundwater at Well P115689: " ' 

' 

Smooth performed over '10 years of recorii indicates an5ncreasing trend in VC concentration'-(N = 19, lst 
order, half-window = 4). These data contain adout.lO%'nondetects. This well is-located east of B551. . 3 . .  ,. 
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Figure 4-14 Smooth of Trichloroethene Concentrations in Groundwater at Well 0049 1 

Smooth performed over 12 years of record (N = 44, 2"d order, half-window = 12). Various 1'' and 2nd , 

order smooths of this data all indicate the TCE concentrations peaked after one or 2 years of monitoring,. 
followed by a nonlinear downward trend during the next decade. Nondetects are only 2% of this data. 
Well 0049 1 is located in the americium zone. 

4-19 
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Figure 4-15 Smooth of Tetrachloroethene Concentrations in Groundwater at Well 0229 1 

Smooth performed over 12 years of record (N = 42, 1'' order, half-window = 8). Despite the variability in 
PCE concentrations, both the smooth and the raw data imply the presence of an increasing concentration 
trend. These data contains only 2.4% nondetects. The well is lochted in MSS 113 at the Mound Site. 

i .  . .  
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Figure 4-16 Smooth of Dissolved Arsenic Concentrations in Groundwater at Well B206989 
I 

Smooth performed over nearly 14 years of record (N = 14, 1'' order, half-window = 4). It may not be 
defensible to evaluate a trend in this data because it consists of 50% nondetects. This well is located in 
No Name Gulch east of the East Landfill Pond. 

E 
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Figure 4-17 Smooth of Nitraternitrite (as N) Concentrations in Groundwater at Well B206989 

Smooth performed over 14 years record (N = 28, 1" order, half-window = 6). Various 1': and 2" order ' 

smooths fitted to this data imply a shallow concentration minimum in' the.data at 6 to 9 years of record. 
Overall, there does not appear to be an increasing or decreasing'treid. There are' no nondetects in the- 
data. This well is located in No Name Gulch east of the East Landfill Pond, and its groundwater contains 
nitratehitrite concentrations greater than the 10 mg/L surface water action level. 

. 

"I 
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Figure 4-18 Smooth of Tetrachloroethene Concentrations in Groundwater at Well P114889 

1 

Smooth perforfned over 10 years of record (N = 20, 2nd order, half-window = 8). There' appears to have 
+en a steeply rising trend for the first three years, then a large gap in monitoring until year 8.4. Step- 

' trend testing methods might be applicable to this data if 1) a hypothesis is proposed that explains why the 
initial trend stopped and 2) there were more than two recent data points. This well is located south of 
B371. 

- -  
r 
.I 
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Figure 4-19 Smooth of Uranium-234 Activity in Groundwater at Well P415889 

Smooth performed over 2 year record (N = 15, lst order, half-window = 3). Less than four years of record 
, 

is probably too short of a period for trending. .The well is located west of B l l 9 .  ' * >  

' - ..- 

. .. 
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4.4 Statistical Evaluations of RFETS Data Using WQStat Plus 

The RFETS groundwater data described earlier were evaluated in several ways to support trend testing 
decisions. It is important to remember that these data evaluations are for statistical testing purposes, and 
they are not intended to describe overall groundwater quality at RFETS. A much more complete and 
much larger data set would be required for the latter purpose. 

4.4.1 Plots of RFETS Data 

Test groundwater data from RFETS were initially interpreted based on visual inspection of three types of 
concentraion versus time plots generated by WQStat Plus, 

1.  Time series plots by analyte for each well. 

2. Seasonality plots showing deseasonalized concentrations versus time along with the original data 

3. Shewhart-CUSUM charts by well-analyte pair. 

These plots are contained in Appendix E. They were used to subjectively estimate if an upward trend, 
downward trend, or no trend at all was present in the data. Strong trends with steep slopes that are 
approximately linear are easy to identify visually or statistically. However, trend identification is more, 
subjective when the data plot shows minima or maxima, is nearly flat-lying, or contains a trend rebersal. 

When data from multiple wells were plotted on the WQStat Plus time series plots (stacked time series), 
the concentration scales were often compressed making it difficult to visually identify trends. The 
Shewhart-CUSUM charts for individual wells were often easier to interpret. 

Seasonality plots are best for visual interpretation of trends, because they plot the deseasonalized data 
versus time. This effectively lowers the noise level and emphasizes any trend in the data. Where 
possible, seasonality plots were used in this report to visually identify trends. Later tables‘ will compare 
these visual estimates of trend with the statistical trend test results. 

Note that three parameters must be specified when plotting a Shewhart-CUSUM chart. These are: “h” a 
control limit for the CUSUM value, an upper Shewhart control limit “SCL”, and “cy’ the acceptable 
displacement of the standardized mean. WQStat default parameters were used in the present work, 
because control limits for post-closure monitoring have not been defined. Therefore, the reader is 
cautioned that while the Shewhart-CUSUM plots of Appendix E portray actual RFETS groundwater data, 
the control limits “h” and “SCL” indicated on the plots have no significance to RFETS. 

> 

, 

L 
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4.4.2 Normality Testing of RFETS Data 

0 :I . ., 

a . . .  - .  . .  . . .  . :  . . .  . . .  . I: , 

The groundwater quality data were testedfor nor&iity using the Sha&ro-Wilk test for sample sizes 550, 
and the Shapiro-Francia test for larger data sets.. Atotal of 48 nomli ty  tests were conducted using , . .  . :  

WQStat Plus. Output from these normality tests may be viewed in Appendix E. Table . .  4-1 summarizes _. 

the test results for'data classified by analyte, well, and length of.season. Twenty eight of the tests found. . 

insufficient evidence to reject the null hypothesis of normality. The remaining 20 tests found statistically 
significant evidence of non-normality at 95% confidence. Although these data are not a comprehensive 
evaluation of the normality of groundwater data at RFETS, the preliminary evidence is that roughly one -i . 

third of RFETS groundwater quality data are not normally distributed. Therefore param'tric tests should::., 
not be applied to this groundwater quality data without verifying the statistical assumptions supporting . .. . ' 

the test. In the absence ofsuch verification, nonparametric methods should'be used for trend analysis. 

.. 

a 
0 

. 
.. 

-. I . .  . , ' .  .. . 

. 

.: 

; 

4.4.3 Seasonality Testing of RFETS Data 

Selection of a trend analysis procedure is partly basd  on whether or not seasonality influences the data. 
For example, in the absence of seasonality the Mann-Kendall test for trend may be used on groundwater 
data. However, if seasonal effects are significant on water quality, then the Seasonal-Kendall test should 
be used. Alternatively, in the presence of seasonality, the Mann-Kendall test can be used on 
deseasonalized data. 

The groundwater quality data from RFETS were tested for seasonality using the nonparametric Kruskal- ~ 

Wallis test. The null hypothesis of this test is that each season has the same median concentration of a 
given analyte. Testing for seasonality via the Kruskal-Wallis test requires a minimum sample size of four 
data points per season (ie., >= four years of seasonal data). Twenty eight sample sets contained sufficient 
data to be tested for seasonality. Statistically significant evidence of seasonality in RFETS groundwater 
was found at 95% confidence for the following three sets of data (Table 4-2). 

1 
1 
'1 
t 
F 
8J 

1 ,  , I  

Well B206989 nitratehitrite data based on quarterly sampling seasons (B206989 is a RCRA well 
sampled quarterly; however it is frequently dry.) 

Well B206989 nitratehitrite data based on semiannual sampling seasons 
- -  

Well 06091 uranium-234 activity data based on quarterly seasons. 
'- 

The above evidence of seasonality in groundwater at RFETS serves only to support the use of the 
Seasonal-Kendall test, or the use of the Mann-Kendall test on deseasonalized data. Data tested for 
seasonality represent a small percentage of the more than one million records of groundwater quality data 
collected over 18 years at RFETS. Therefore, on the basis of the above seasonality testing no conclusions 
should be reached regarding the nature and extent of seasonality in UHSU groundwater at RFETS. a 
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Table 4-2 indicates that only 1 out of 15 seasonality tests was statistically significant (nitratehitrite at 
well B206989) for the semiannual data. Two out of 13 tests werestatistic*ally significant for the quarterly 
data. However, because of missing data and small sample sets, no conclusions should be drawn regarding 
the detectability of seasonality in semiannual sampling versus quarterly sampling. There has been limited 
monthly groundwater quality sampling at RFETS, but there were insufficient monthly data in the test data 
to evaluate seasonality using monthly seasons. 

4:4.4 Autocorrelation Testing of RFETS Data 

Published literature regarding trend analysis frequently mentions that serial correlation can impact the 
power of a statistical test’for trend. Therefore, the RFETS groundwater data were tested for serial 
correlation by using the Rank Von Neumann test. Tests for serial correlation are also effected by the 
presence of seasonality and/or trend (IDT, 1998). Therefore, WQStat Plus was used to first deseasonalize 
the data and then detrend the data using Sen’s slope trend estimate. The null hypothesis (I&) is that no 
serial correlation is present (i.e., the data are independent). There is statistically significant evidence to 
reject H,-, when the computed statistic R, c the tabulated critical value at a given significance level. 

The results of 30 Rank Von Neumann tests are found in Appendix E, and these results are tabulated on 
Table 4-3. This table indicates that 10 of the 30 tests had statistically significant evidence of serial 
correlation at 95% confidence. Monthly sampling should have higher autocorrelation than quarterly 
sampling, and quarterly sampling should have higher autocorrelation than semiannual sampling. 
However, this is not observed in the RFETS data, probably because of missing quarterly data, and even 
larger percentages of missing monthly observations. Examining the test results by season, Table 4-3 
contains the following results, 

I 

0 Semiannual seasons - four tests indicated autocorrelation, while 10 tests did not 

0 Quarterly seasons - five tests indicated autocorrelation, while 10 tests did not 

Monthly seasons - one test indicated autocorrelation. 0 

Only one monthly test was performed because of insufficient data. The evidence of serial correlation in 
the semiannual data is only slightly less frequent than it is in the quarterly data. Semiannual groundwater 
sampling is proposed for postclosure monitoring at RFETS. 

The Seasonal-Kendall test is robust against seasonality, non-normality, and can be used with some 
nondetects (censoring), or missing values (Hirsch et al., 1982). However, the Seasonal-Kendall is not 
robust against serial dependence (Hirsch and Slack, 1984). A modified version of the Seasonal-Kendall 
test was developed to be robust against serial dependence (Hirsch and Slack, 1984). The modified test 
does not work well with periods of record of less than 10 years, and it is less powerful than the original 
Seasonal-Kendall when the data are in fact independent (no serial correlation; Hirsch and Slack, 1984). 
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The modified Seasonal-Kendall test is more complex, and at the time.of writing, software has.not been' '. I .  

ldcated'to evaluate it on RFETS data: Because .the .modified Seasonal-Keridall test was not evaluated and 
requires at 'least 10 y e i s  of data, it not recommended for postclosure .monitoring. 

._ ' . 
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Table 4-1 Normality Test Results for RFETS Groundwater Data 
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Table 4-2 Seasonality Test Results for RFETS Groundwater Data 

I 02291 I 0.482 I 3.841 I N I 
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Table 4-3 Serial Correlation Test Results for RFETS Groundwater Data 

. .  
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4.5 Trend Analysis Results from WQStat Plus 

Test data sets containing groundwater quality data from RFETS.were processed by program WQStat Plus. 
.The .objective’was to compare three nonparametric trend analysis procedures, and associated slope 
estiktion methods. The’three procedures are: ’ . ’ 

: :  

. .  . .  

.~ . .  .... , . .  . . . .  

0 ‘ Mann-Kendall test for trend applied to unadjusted groundwater concentration data; 

0 Mann-Kendall test for trend applied to previously deseasonalized concentration data; and 

0 Seasonal-Kendall test for trend applied to unadjusted groundwater concentration data. 

Deseasonalization was done following the method of EPA (1989). Each deseasonalized concentration 
equals its unadjusted concentration plus the grand mean, minus the seasonal mean. Deseasonalization is 
also discussed by IDT (1998). 

The output from the above tests is contained in Appendix E. Output from procedure 3, the Seasonal- 
Kendall test, is entitled “Seasonal Kendall Slope Estimator” in Appendix E. The well name is printed 
under the title block, and the computed Seasonal-Kendall statistic is labeled “Z.” Negative values of Z 
indicate a negative slope or downward trend, if the test is statistically significant at some confidence level 
(95% confidence is used in this report). Positive values of Z indicate a positive slope or upward trend, if 
the test is statistically significant. 

Results from Procedure 1 (the Mann-Kendall on unadjusted data) are entitled “Sen’s Slope Estimator” in 
Appendix E. The test is significant when the calculated Mann-Kendall statistic is greater than the critical 
value at 95% confidence (shown on the output as an alpha value of 0.05). Appendix E results from 
Procedure 2 (the Mann-Kendall on deseasonalized data) are entitled “Sen’s Slope Estimator (Alt. 
Values).” 

The test results (at 95% confidence) of the above three procedures have been tabulated in Table 4-4. The 
left-hand column shows the number of seasons assumed in creation of the data set. The results of 
Procedure 1 are tabulated 7 columns from the left as “U” for upward trend, “D’ for downward trend, or 
“N’  for no trend. These trend results are given at the 95% confidence level. Column 8 data is the 
steepness of the trend based on Sen’s nonparametric slope estimator. This estimator has units of ug/L per 
year for non-radionuclides, and pCi/L per year for U-234. 

1 

Table 4-4 column I1 (from left) holds the results of procedure 2, the Mann-Kendall test on 
deseasonalized data. Again the Sen slope estimator follows it in column 12. Empty cells in the table 
indicate that there were insufficient data points to deseasonalize the data. At least four points are required 1 per season. 

/ 
I 

Review Exemption: CEX-105-01 

--. 
4-33 



Fifteen columns from left in Table 4-4 are the Seasonal-Kendall test results. Column 16 holds the related 
slope estimator results. More subjective, visual estimates of trend based on inspection of seasonality ,. 
plots, are listed in the fifth column from the right side of the table. 

Column three.(from right) compares. 24 Seasonal-Kendall tests with their Mann-Kendall counterparts;(the 
. latter using deseasonalized data); Twenty one of the 24 tests (88%) gave the same results. Given this. : 

simil+ perfohnce;  it is simpler to use the Seasonal-Kendall. for: postclosure.monitoring, .and.avoid the' .. 

need'to deseasonalize the 'concentration datiil 

Steep, highly )linear data trends are easy to identify. Human'interpretation of trends becomes more ... 1:. . . 

', subjective if the smooth is highly nonlinear,.or as the trendslope . approaches zero. However, it is . &  .!' .. 

instructive to.'compare trend'detection by humans (the'visual trend result)iwith the Seasonal-Kenda1l:test ' ,  

' result .at 95%confidence. ' This comparison~;is done in column 2 (from right). Again, 21 *of 24 testS,(88%) . 
agree on the trend result. 

' 

. . I . .  
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, . ., . .  
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; . .% / .  . . .  

. ,  , .  . .  . . .  . : .  . , .  

,. Column 1 from right is a si&larcomparison of the visual'trends against theMann-Kendall test with . :., 

.. deseasonalized data. Only 82% of these M-K tests agreed with . .  the ,human interpretation. This is a.second. 
reason to prefer the Seasonal-Kendall for postclosure monitoring and to dispense with the need to.:., .' . .'%;: 

; .deseasonalize. 3 . 
-. . , '  

. .  _ . .  - a  . ..- _ .  . .  - - . . .  , 

. .  . . .  .. ._ . . . . . l .  
, .  

In conclusion, all threenonparametric trend analysisimethods worked quite well with the RFETS :;7,; :.!: .. 'i 

groundwater data.' All three statistical methods were usually in agreement with the more subjective .trend 
identifications made by humans. The' Seasonal-Kendall test agreed very ,closely (88%) with the Mann- 
Kendall test when the .latter test used deseasonalized ,data. Given th'is similar performance, .it'iS simplkr to 
use the Seasonal-Kendall for.postclosure.monitoring; and ,avoid the need to'deseasonalize the ' ..; . ! ' . 
concentration' data; . . ... .. ., ' 
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, , .. . 
The four right-most columns of.Table 4-4 compare the trends predicted'by the various methods as:a.c&de: .. . 

. indicator'of relative performance. Specifically, the fourth column from the right compares'the results.of .< . <  , 

the ordinary Mann-Kendall test w'ith its counterpart on deseasonalized data. This indicates that out.of .33 
comparisons, 30 of the tests (91%) gave the'same.predictions. . .  Predictably . the tests differed for quarterly . .: 

. , . .* 1. 

seasons of nitratehitrite at Well B206989, and U-234 at Well 06091, which were previously shown to' . . . .  - 

. .  . .  . .  . .  ,. . have statistically significant'seasonality. ' .: , ,~ , . . '!., : 5 .  .. 

. .  .,:. 

' .  . ... . 

. . .:.:. 
. .  . .  

. .  ' , 

. .  
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2 

CT 06091 24 110 81 U 0.37 112 81 U 0.366 2.795 

70193 19 96 58 U 118.7 98 58 U 131.2 2.939 

06091 25 75 85 N 178.6 77 85 N 183.3 1.46 Nitrite 

9206989 22 -12 -71 N -271 9 -11 -71 N -260.5 -0.275 

A 

A 

A 

A 

A 

A 

D 

A 

A .  

U 

U 

~ ~ 

037 U A A A 

119.2 U A ' A  A 

U 

N 

498.2 U A A A 

16.1 N A D A 

2 

2 

2 

2 

PCE 02291 19 98 58 U 4836 97 58 U 4683 2987 

PCE P114889 9 20 20 U 167 20 20 U 177 1788 

TCE 00491 23 -117 -76 D -3.46 -117 -76 D -3519 -2992 

TCE 3586 32 -295 -123 D -0 289 -275 -123 D -0346 -4636 

D 

D 

-3.41 D A A A 

-0.294 D A A A 

/ 
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Table 4-4 Comparison of Seasonal-Kendall and Mann-Kendall Tests. L 

1.96 

1.96 

1.96 

- 
- 

- 
I .96 

1.96 

.1.96 
- 
- 

1.96 

1.96 

1.96 
- 

1.96 

1.96 
- 

~~ 

D -0.057 D A A A 

A D  D -0.113 N A 2 U-234 10194 18 -69 -53 D -0.101 -69 -53 D -0.101 -2.464 

2 U-234 06091 25 57 85 N 0.044 56 85 N 0.056 1.413 1.96 

1.96 
- 
- 

--__- 

N 0.644 N A A . A  

N 0.226 N A A A 

1.96 

1.96 

1.96 

I .96 

- 
- 
- 
- 

D -33.3 D A A A 

U A A A 
- u i3:i 

N -1.35 N . , A  A A 

U 0419 U A A A 

I I I I  I I I I I I I I 

4 I CT I 06091 I 3 5  I 292 I 140 I U I 0483 I 299 I 140 I U I 0458 I 3731 
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4.6 Trend Analysis Results from Program TREND3 

Previous Section 4.5 discussed trends visually identified from inspectam of seasonL...,y plots anc 
compared to hypothesis tests of trend performed by WQStat Plus. However, there are other ways to 
evaluate trends. In the present Section, trends have been visually estimated from many of the LOWESS 
smooths, which were discussed in Section 4.3. These visual trends were compared to the Seasonal- 
Kendall test of trend performed by program TREND3 (Gilbert, 1987, Appendix B). 

Another difference is that the nondetect results were used at the reported value in the WQStat Plus runs. 
Nondetects were included at one-half its reported value in the TREND3 runs. The output of TREND3 is 
contained in Appendix F and the test results are tabulated on Table 4-5. 

Table 4-5, column four (from left) shows that between 8 and 15 years of data were potentially available 
for trend testing. However, the 8th column indicates that substantial percentages of data were missing. 

' Missing data reached a maximum of 89% for vinyl chloride at Well P115689, assuming monthly seasons. 
Inspection of Table 4-5 indicates that monthly seasons have the highest percentages of missing data, and 
semiannual seasons have the lowest. This is because relatively little monthly groundwater sampling is 
performed at RFETS. RCRA wells B206989 and 70193 are sampled quarterly, but show missing data 
because of limited availability of groundwater near the Present Landfill. 

Table 4-5, column three (from left) lists the subjective visual estimate of trend for each analyte-well 
combination. Column three also notes data problems, such as outliers, observed in each data set. The 5" 
column indicates that semiannual, quarterly and monthly seasons were evaluated, and the 6" column 
shows the number of seasonal data points available. When the data sets were created a maximum of one 
data point was selected to represent each season. 

The null hypothesis of the Seasonal-Kendall test is that there is no trend. When the absolute value of the 
computed Z statistic is greater than the critical value of 1.645, then there is statistically significant 
evidence of a trend at 95% confidence. If the 2 score is positive the trend is upwards; if negative the 
trend is downwards. The 3rd column from the right on Table 4-5 indicates if a significant trend was 
detected by the Seasonal-Kendall test. 

The right-hand column of Table 4-5 compares the visual trend prediction based on inspection of 
LOWESS smooths with the Seasonal-Kendall test results. Out of 21 comparisons, 18 agree (86%). This 
result is consistent with the 88% agreement found in Section 4.5 which compared Seasonal-Kendall tests 
run by WQStat Plus to visual trend identification based on seasonality plots. Much of the 14% 
disagreement between the Seasonal-Kendall and visual predictions based on smooths is probably the 
result of the subjectivity of trend identification by humans. 

Table 4-5 indicates that the Seasonal-Kendall test generally predicts the same trend (or lack of trend), 
regardless of whether the data consist of two semiannual seasons, four quarterly seasons, or 12 monthly 
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seasons. This was true despite the fact that much of the monthly seasonal data was missing from the data I 
sets. This absence occurred because groundwater monitoring at RFETS is more commonly seqiannual or 
quarterly. I 
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4.7 

Trend analysis of groundwater quality data normally examines analyte concentration as a function of 
elapsed time, measured from the dates of water sampling events. An external, independent variable such 
as net infiltration, or the variation in water table elevation, may influence the groundwater concentration 
data. This is postulated to happen from the mixing of two water quality types: infiltrating precipitation 
(relatively dilute concentrations due to short residence time), and groundwater with higher concentrations 
and longer residence time. It may be possible to mathematically model this influence and remove it from 
the data. Removal of this external variable may enhance our ability to detect a concentration versus time 
trend. 

Trend Analysis Results Using An Exogenous Variable 

An exogenous variable is an independent variable whose value is determined externally to a statistical’ 
model. By contrast, an endogenous variable is a dependent variable whose value is determined within the 
model. As discussed earlier, a plausible exogenous variable for evaluation with groundwater quality data 
is the variation in water table elevation. It is postulated that the change in elevation reflects seasonal 
variations in groundwater recharge due to infiltrating precipitation, which may in turn affect analyte 
concentrations in UHSU groundwater at RFETS. 

I 

Historical water level measurements were retrieved from SWD for the wells and sampling events used in 
the trend testing quarterly data (Appendix C). Water levels’are measured at RFETS as the depth to water 
(in decimal feet) below the top of the well casing. This depth to water usually varies seasonally, and 
between sampling events. The mean water level depth was computed for each well using all available 
water level measurements. The water level deviation for each well and sampling event was computed as 
the mean depth minus the water level measured prior to sampling. Therefore, positive water level 
changes indicate a water table elevated above the mean, while negative changes indicate a depressed 
water table. 

Because each well has a different depth from the ground surface to its mean water table, and the wells 
were installed at various surface elevations, the physical elevation of the water table is not of particular 
interest here. It was convenient to work with changes in water table depth measured relative to the top of 
well casing. 

For each combination of analyte and well, concentration data (measured quarterly), were plotted on the 
vertical axis (y-axis) versus the corresponding water level deviations on the horizontal axis (see 
scatterplot Figures 4-20,4-21,4-22). A second order LOWESS smooth was then fitted to each scatterplot 
by program Robust Fit. These smooths are the curves or line segments shown on the plots. The smooth 
is assumed to indicate the general effect on concentration of the changes in water level elevation. 
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Figures 4-21 and 4-22 indicate wide scatter in the concentration versus water level deviation data. The 
horizontal point band of Figure 4-20 .indicates that nitratehitrite concentration ,is relatively insensitive to. 
10.4 feet of change in water levels at Well.70193. The coordinates of each fitted smooth may'be exp.oied 

. , .  : . .  . ., 

. .  . .  . -  from Robust Fit to a spreadsheet. . .  

* .. . .  

The effect of water table fluctuation on concentration islremoved by computing residual concentrations. . 

The residual concentration (delta C) iscomputed as each.measured concentration minus the . i' 

corresponding y-value of the smooth. These concentration residuals may then be plotted versus .time, and 
..., . . . : .  , , i . .  . . .  .. ., analyzed for trend using the Seasonal-Kendall test in WQStat Plus. I .  

Seasonality plots.were generated in WQStat-for TCE concentration residuals at wells 00491, and.3586 . 

and.for nitratehitrite at Well 70193. The'Kruskal-Wallis test failed to find evidence of seasona1ity.h any 
of these plots at 95% confidence. ,: '2 : , 

, . .  , I  .. ., 

. .  . ,  . , .: 
. / I  

'-' The Seasonal-Kendall test was applied to the'concentration residuals; the results are-shown in Table 4-6. 
" ,  The absolute.yalues of the 2's calculated on concentration residuals are.smaller than the Z's calculated : 

from concentration data which weremot adjusted for water level changes. Therefore, the water level ' . : 

adjustments weakened the Seasonal-Kendall test's ability to predict concentration versus ti.me trends. 'In. 
fact, the TCE concentration residuals in Well 00491 failed to find evidence of a decreasing trend at 95% 
confidence. It did detect the decreasing trend.at a 1ower.confidence of 89%. These trend analysis 
comparisons were ,performed on a small sampling of analytes and. wells so the evidence should be. 

. .  , considered preliminary. In conclusion, preliminary ,evidence indicates that water level adjustment .of ., 

analyte ,concentrations .in RFETS groundwater fails to enhance detection of Concentration' yersus time .. 
.trends. , . .  . .  . . . .  < . :  . 
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-1.613 -5.144 None Down Down 

-1.966 -5.756 Down Down Down 

3.144 3.62 UP UP UP 

Table 4-6 Comparison of Seasonal-Kendall Test Results using Either Unadjusted Concentration Data, or 
Adjusting it for Water Level Fluctuations. 

TCE 

TCE 

Nitrate/ 
nitrite 

, 

1 
I 

. .  

I I I I I I 
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Figure 4-20 Smooth of Nitratemitrite (as N) Concentration (y-axis) versus Water Level Deviation from 
the Mean (x-axis) at Well 70193. 

The smooth ignores the 30 mgL outlier. (2nd order smooth, n=33, half-window=6). The nitratehitrite 
concentrations do not appear to be strongly influenced by up to 10.4 feet of variation in groundwater level 
at this well. 
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Figure 4-21 Smooth of TCE Concentration (y-axis) versus Water Level Deviation from the Mean (x- 

'Ais) at Well 3586. 

This is a 2nd order smooth, n=32, half-window=6. The TCE concentration does not appear to be affected 
by up to 6.2 feet of water level change at this well. 
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Figure 4-22 Smooth of TCE Concentration (y-axis) versus Water Level Deviation from the Mean (x- 
axis) at Well 00491. 

- - .  .. . 
This is a 2"d order smooth, n=26, half-window=6. 
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4.8 Application of Trending Methodology at RFETS 

This report has been limited to a review of water quality trending methods. This work represents only a 
single aspect in the design of a postclosure monitoring program for RFETS. Numerous technical 
decisions remain to be made regarding data collection and interpretation. Examples include decisions 
about the list of analytes to be monitored, suitable analytical methods, required detection limits, selection 
of appropriate monitoring well locations, number of wells, screened interval, and sampling frequency. 

A well located far downgradient of the IA is expected to contain groundwater with nondetect or very low 
concentrations of manmade COCs, and background levels of naturally occurring COCs. Groundwater 
samples collected from that well may yield VOC data that is 99% or 100% nondetects. Such data cannot 
be meaningfully trend tested. Trending analysis also requires some minimum number of data points 
collected at a regular sampling frequency, over a monitoring period of at least four years. 

These technical decisions will be documented in a sampling and analysis plan for post-closure 
groundwater monitoring at RFETS, or a similar document, yet to be developed. The plan should contain 
all of the elements of a traditional sampling and analysis plan for environmental monitoring. It should 
also include a flowchart of the statistical decisions and logic to be followed in processing and testing the 
post-closure monitoring data. 

... , .. , 

4-49 
Review Exemption: CEX-105-01 

--. 



. .  . . 1  

. .  . .  . 

04-RF-0 1 164 ' 

. I. i 

I .  

' .  

! ' '  . . .  

I . .  

, .. 

4-50 I 

, . . -  

'1 1 

.; . , ' 

. .' . .  

.,. 

. .  

. .  

. .  
: a ,  

1 .  

. .  . ., .. 

. .  

. . :  

This page intentionally le3 blank. 

Review Exemption: 'CEX-105-01 



I 04-RF-01164 

I 5 SUMMARY AND CONCLUSIONS - 

This investigation has reviewed much of the published literature regarding trend analysis methods. 
Emphasis was placed on trend analysis of environmental water quality data. The literature review 
indicates a number of data properties that may influence the selection of a statistical trend analysis 
method and its ability to correctly recognize a trend. These data properties include: 

I -  
4 

0 

0 

The statistical distribution of the data (the population from which it came); 

Censored data and multiple detection limits in the data; 

0 

0 

0 Observations missing from the'data; 

0 

0 

0 Data outliers; and 

0 

Serial correlation in the data; 

Seasonality and climatic effects on water quality; I 
Multiple observations per combination of analyte-monitoring well-season; 

Temporally variable data, inconsistent sampling or analytical procedures; 

I 
I 
I The period of data record. Is there enough data, or is there too much data? 

This investigation considered step trend and monotonic trend identification. Monotonic trend analysis is 
the most common type, and it is performed unless there is reason to anticipate a step trend in water 
quality. It is concluded that numerous D&D and remediation events at RFkTS (e.g., groundwater 
treatment systems) may affect local downgradient groundwater quality, but that changes will likely be 

1 

1 
1 

1 

I gradual. 

Most of the published investigations of water quality trends since 1980 have utilized nonparametric 
statistical tests for monotonic trend. Parametric methods of trend analysis require that the sample data are 
independent and were drawn from a normally distributed population. Parametric methods that involve 
computation of the sample mean and standard deviation are more seriously impacted by data outliers than 
are nonparametric methods. Experience with groundwater quality data has also indicated that these data 
are frequently non-normal. This shifted the focus of the report to selecting some candidate nonparametric 
methods for further evaluation. 

Three nonparametric trend analysis methods that are widely used in the water quality literature were 
selected as candidate methods for further testing using groundwater quality data collected at RFETS. The 

a 
candidate methods were: . .  

0 Mann-Kendall test for trend on unadjusted concentration data. (Sen's slope estimator method was 
used with the Mann-Kendall to estimate trend magnitudes); I 

5-1 
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. .  
Mann-Kendall test for trend 'on deseasonalized concentration data.'.' (Deseasonalization was:', 
performed by the method'of EPA (1989)); and 

Seasonal-Kendall test for trend'on unadjusted concentration data. (The Seasonal-Kendall slope 
estimation method. was used with this test.). 

. . . . . .  ? .  . . .  . .  ' * .  . '  ' 1  , 

0 

. . .  .: . 'I 7 

. .  . .  
. 1  . . .  . .  

Groundwater data for testing these methods was drawn from the "Groundwater Superset." . .  Test data 
contained examples of many of the data properties listed above, e.g., outliers and missing data. Data sets 
were created to compare trend test results for three groundwater sampling intervals (seasons): . 

semiannual, ,quarterly, and monthly. . . .  

Shapiro-Wilk tests indicated that about 40% of the groundwater.data were not nonnal1y:distributed. This 
. .  . .  supported the decision to use nonparametric trend analysis methods. . .  . r . 

The three candidate nonparametric methods gave similar .trend predictions regardless of. whether the input 
data were defined as semiannual seasons, quarterly seasons, or monthly seasons. This was not expected 
since much of the data were &sing for monthly seasons.' The methods all worked consistently with the 
RFETS groundwater test data despite the presence of data issues such as outliers:. 

The Seasonal-Kendall test is prefeked.over the ordinary Mann-Kendall .test for post2losure monitoring at 

. .  

. i : .  . 

' . 8 ' .  - . . .  . .  . .  .RFETS . *  for the following . . '  reasons: , (  . _  

0 Statistically. significant Seasonality was identified at 95% confidence in some of the RFETS 
'groundwater test data.'. The Mann-Kendall. on unadjusted data does not account for this. ' 

The Seasonal-Kendall test agreed closely (88% of the time) with the Mann-Ken+l! !et_ n'hn~: 
L k l ~  Liier was usea on aeseasonalized concentration data. Thus we should use the Seasonal- 
Kendall and a v i d  the need to deseasonalize the groundwater data. . . ,  

The Seasonal-Kendall test (used at 95% confi'dence)'agreed well(8'6 to 88%)' with the more ' ' 
suljjective trend identifications 'made by human inspection of seasonality plots; or of LOWESS 
smooths. 

, a  : 
' 

. . . .  . .  . . . .  . .  

.I. - . . . .  . . .  ' ,;. I**: : ,, ' , . .. . .  . .  
. . .  

. . . . . . .  : . .  . 
. 

t i  .". : '.. ' . . . . . .  . .  , , , -  . 

. . .  . . !  . .  
I . .  , . ,  ' 

. .  

The Rank Von Neumann test was run to test for serial correlation in the groundwater data. Data were first 
deseasonalized and then detrended prior to running the Rank Von Neumann test, because it is sensitive to 
trend and seasonality. Statistically significant (at 95% confidence) serial correlation wad found in some ' 
of the quarterly and semiannual data. The literature indicates that serial correlation is greatest at higher 
sampling frequencies. Therefore, semiannual groundwater sampling is preferred over quarterly or 
monthly sampling, for postclosure monitoring. 

Measured deviations from mean water table elevation were used as an exogenous variable for trend 
analysis of groundwater. LOWESS smooths were used to adjust concentration data for groundwater for 
hypothetical impacts due to water table changes at RFETS. The Seasonal-Kendall test was applied to the 
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adjusted data (concentration residuals) and the results were compared with those based on unadjusted 
data. The absolute values of the Z statistics calculated on concentration residuals were smaller than the 
2's calculated from concentration data which were not adjusted for water level changes. Therefore the 
'water level adjustments weakened the ability of the Seasonal-Kendall test to predict concentration versus 
time trends. This preliminary evidence (based on a few well-analyte combinations) indicates that water 
level adjustment of analyte concentrations in RFETS groundwater fails to enhance detection of 
concentration versus time trends. 

The literature says that nonparametric trend analysis methods, including the Seasonal-Kendall test, are not 
robust against serial correlation. However, despite the serial correlation found in the RFETS test data, the 
trend predictions of the Seasonal-Kendall test agreed very well with the visual trend predictions of 
humans. It is concluded that the Seasonal-Kendall test should work well on groundwater data collected 
semiannually for post-closure monitoring. 

A possible alternative for post closure monitoring is to use a modified version of the Seasonal-Kendall 
test which compensates for serial correlation (Hirsch and Slack, 1984). However, this modified test 
requires at least 10 years of record, and is less powerful than the ordinary Seasonal-Kendall test when the 
data lack serial correlation. Therefore, if statistically significant serial correlation is not found to be 

trend test. 
abundant in the post-closure data, the ordinary unmodified Seasonal-Kendall remains the best monotonic 1 

5-3 
Review Exemption: CEX-105-01 

._. 



. 04-RF-0 1 164 
. .  

. . .  . . .  . .  , . . .  I .  

. ;_ . 

. . .  

. .  

. . .  . . . .  8 .  

. '. 

. , I ,  . I .  ' ,  / .  

, , e  i . .  . .  . . .  
. .  ... ., . . 

I . .  

. . .  . . . . .  . . . .  . , . . ,  . .  .:_ ; . . , .  . .  . .  . . .  . .  _ I  
. .  

. . .  . . .  
' . /  . . t . .  . . ,  , % .  , . . .  . ,  . , .. ' . ,  . .  ' ;. . .  . .  . :?:..'- . . , , . -  - .  

. . a  

. . . .  . . . .  . . . .  . . .  . . . .  . . .  i ', ~ . : , .  , . . . . .  . I .  . .  I ;.. ' ~ . , .  . .  . .  I :I I . . . .  

.. ;~,,. . . . . . .  ' ... i > 
8 .  . .  . .  

! :, . I - c  !: 

. ' I: . . .  . . . .  . , .. 

i .  _, . . 

. . .  ,1 I' . ,'.. I I .  : . . , . '  I . . .  
. .  . .  

I >  

This page intentionally lefr blank. . .  

I 

5-4 

I 
1 
I 
I Review Exemption: CEX-105-01 

-. 



04-RF-01 I64 

6 REFERENCES 

Alley, W.M., 1988, Using exogenous variables in testing for monotonic trends in hydrologic time series: 
Water Resources Research, V. 24, No. 11, pp. 1955-1961. 

Antonopoulos, V.Z., Papamichail, D.M., and Mitsiou, K.A., 2001, Statistical and trend analysis of water 
quality and quantity data+for the Strymon River in Greece, Hydrology and Earth System Sciences, v. 5, 
no. 4, pp. 679-691. 

ASTM (American Society for Testing and Materials), 1975, Outlier Test Method Paper E178-75. 

ASTM, 2002, E178-02 Standard Practice for Dealing with Outlying Observations. 

Aziz, J.J., et al., 2003, Monitoring and Remediation Optimization System (MAROS) Software Version 
2.0 User’s Guide. Air Force Center for Environmental Excellence (WCEE). 

Bradley, J.V., 1968, Distribution-Free Statistical Tests, Prentice Hall, Englewood Cliffs, NJ. 

Cleveland, W.S., 1979, Robust locally weighted regression and smoothing scatterplots: J. Amer. Statist. 
Assn., v. 74, 829-836. 

Conover, W.J., 1999, Practical Nonparametric Statistics, 3rd Ed. John Wiley & Sons. See the Sign Test 
on pp. 157-169, and the Cox and Stuart Test for Trend pp. 169-175. 

Cox, D.R., and Stuart, A., 1955, Some quick sign tests for trend in location and dispersion: Biometrika, 
v. 42, no. 1/2,80-95. , 

Daniels, H.E., 1950, Rank correlation and population models: J. Royal Statistical S o c . ,  Series B, v. 12, 
no. 2, 171-191. 

Dixon, W.J., 1953, Processing data for outliers: Biometrics, V. 9, p.74-89. 

El-Shaarawi, A.H., Esterby, S.R., and Kuntz, K.W., 1983, A statistical evaluation of trends in the water 
quality of the Niagara River: J. Great Lakes Research, V. 9, p.234-240. 

El-Shaarawi, A.H., and Niculescu, S.P., 1992, On Kendall’s tau as a test of trend in time: 
Environmetrics, V. 3, p. 385-412. 

EPA (U. S. Environmental Protection Agency), 1989, Statistical Analysis of Groundwater Monitoring 
Data at RCRA Facilities. EPN530-SW-89-026. 

EPA, 1992, Methods for Evaluating the Attainment of Cleanup Standards. Volume 2 Groundwater. 
EPA230-R-92-0 14. 

6- 1 
Review Exemption: CEX-105-01 

1. 



04-RF-0 1 164 

EPA, 2000, Guidance for Data Quality Assessment, Practical Methods for Data Analysis: GPA QA/G-9..: 
QAOO Update. EPA/600/R-96/084. See Chapter 4.3 Tests for Trends. 

. . ' .  I 

'; 1 
I 
I 

. .  . .  . .  

EPA, CDPHE, and-DOE, 1996, Final Rocky Flats Cleanup Agreement, July 19,.1996. . . ,. . 

Yucca Mountain Region, Nevada and.California, 1960-2000. USGS WRI Rpt. 024178.. 
. Fenelon, J.M. and Moreo, M.T., 2002, Trend Analysis of Groundwater Levels and Spring'discharge'.in.the 

. . . r  

, .  . .  

Gauthier, T.D., 2001,. Detecting trends using Spearman's rank correlation coefficient: ,Environmental 
Forensics, Vi 2, p- 359-362. 

Gibbons, R.D., 1994, Statistical Methods for Groundwater Monitoring. John Wiley'& Sons. 286 pp. Sei  

.. 
.. . . .  . . .  

.: : ' 

I 
Chapter 9 Trend Analysis. 

Gilbert, R.O., 1987, Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold 
Co., 320 pp. See Chapter 16 & 17 on detecting trends, and Appendix B Testing for Monotonic Trends! . .. 

. 
' _.I . . . " .  . , .  

Using Mann-Kendall, Seasonal' Kendall, and Related Nonparametric Techniques. ' :. . .  '. . 

Harcum, J.B., Loftis, J.C., and Ward, R.C., 1992, Selecting trend tests for water quality sehes with serial" 
:.. . 

correlation and missing values: Water Resources Bull., V. 28, No.3, p. 469478. . . :  

Heitler, W.J., 2004, Robust Fit, A computer program for robust smoothing of data using locally-weighted 
scatterplot smoothing (LOWESS), or robust fitting of' data to a polynomial. http://www.st-' 
and re ws. ac . u k/- w i Idro bus tfi t/ 

Helsel, D.R. ,and Cohn, T.A., 1988, Estimation of descriptive statistics for multiply censored water quality ". 

. .. . . .  .1 :. .--- - -  data: Water Resources Rp.s~.nrch,, ?'. 24, XG.. 1'5, yy. I Y Y  I - L U W ,  
, I L ' .  . 

Helsel, D.R. and Hirsch, R.M., 2002, Statistical Methods in Water Resources: U. S. Geologkal Survey . ' 

Techniques of Water-Resources Investigations, Book 4, Hydrologic, Analy s'is and Interpretation, Chapter, . .  

A3,5 10 pp. 

Hirsch, R.M., Slack, J.R., and Smith,R.A., 1982, Techniques of trend analysis for . .  monthly . .  .. water , , quality: , , j .  I' ' 

data: Water Resources Research, V. 18, No. I, pp. 107-121. 

Hirsch, R.M. and Slack, J.R., 1984, A nonparametric trend test for seasonal data with serial dependence:, 
Water Resources Research, V. 20, No. 6, pp. 727-732. 

Hirsch, R.M., Alexander, R.B., and Smith, R.A., 1991, Selection of 1 .  methodsfor .. i, the detection and . _ I ,  .. , . ~ . ' . ,  

estimation of trends in water quality: Water Resources Research, V. 27, No. 5 ,  pp. 803-813. 

Hodges, J.L.. Jr., and Lehmann, E.L., 1963, Estimates of location based on rank tests: Annals 
Mathematical Statistics, V. 34, p. 598-611. 

, ( . .  ' ,  . . " . .  , ' .  

. .  . .  

. .  . 
. .  

~- 
~. ~ 

.> - .  . . ._ ~. 

. .. . .  
. I  , .- . 

. . .  

! '  . .  

. .  . .  
. .  . ! .  I .  

f 

Review Exemption: CEX-105-01 
6-2 



04-RF-0 I 164 

Hollander, M. and Wolfe, D.A., 1973, Nonparametric Statistical Methods. John Wiley & Sons. See 
Table A.21 upper tail probabilities for the null distribution of Kendall's K statistic. 

Iman, R.L., and Conover, W.J., 1983, A Modem Approach to Statistics. John Wiley, NY. \ 

IDT (Intelligent Decision Technologies, Inc.), 1998, WQStat Plus User's Guide. This software supports 
Seasonal Kendall, MannXendall, Sen's Slope test, and seasonality testing via Kruskal-Wallis. 

Kendall, M.G., 1975;Rank Correlation Methods, 4* ed., Charles Griffin, London. ' 

K-H, 2000, Final Rocky Flats Cleanup Agreement, Attachment 5, action levels and Standards for Surface 
Water, Ground Water, and Soils, dated March 21,2000. 

K-H, 2002, Annual Report for the RFETS Groundwater Plume Treatment Systems, January &rough 
December 2001. 

K-H, 2004a, Final 2002 AnnualJWCA Groundwater Monitoring Report for RFETS. February 2004. 

K-H, 2004b, Evaluation of Natural Attenuation and Biodegradation Potential of Chlorinated Aliphatic 
Hydrocarbon Compounds in Groundwater at Rocky Flats. Report 04-RF-00358, March 24,2004. 

Mann, H.B., 1945, Non-parametric test against trend: Econometrica, V. 13, p. 245-259. 

'I 

Martin, L.M., 2000, Defacto data analysis methods for goal oriented monitoring: what does current 
practice tell us?: Proceedings National Water Quality Monitoring Council. 
htt D://w w w .n wqmc.or~/2000~roceedin~/Papers/pap marti n.pdf 

Montgomery, D.C., and'Peck, E.A., 1982, Introduction to Linear Regression Analysis. John Wiley, NY. 

Neter, J., Wasserman, W., and Whitmore, G.A., 1988, Applied Statistics, 3rd Ed., Allyn and Bacon, Inc. 
1006 pp. See Classical Time Series Model pp. 820-845. 

Reckhow, K.H., Kepford, K. and Hicks, W.W., 1993, Statistical Methods for the Analysis of Lake Water 
Quality Trends. EPA84 1 -R-93-003. 

Regnier, R., 1998, Trend analysis of annual spring-overturn total phosphorus in 8 small lakes in southern 
Vancouver Island, British Columbia: BC Ministry of Environment, Lands, and Parks. 
http://wlaDwww. nov.bc.ca/wat/waltrendstuff/vanisle/sprin.goverturn. html 

Richerson, P.M., 2003, Northern Malheur County Groundwater Management Area Trend Analysis 
Report. Oregon Department of Environmental Quality. 

Rong, Y., 2002, Laboratory detection limits: Soil Sediment & Water, AEHS Magazine, ApriVMay 2002. 
http:Nwww.aehsma.g.corn/issues/2002/april mav/laboratorv detection.htm 

Review Exemption: CEX-105-01 

--. 
6-3 



04-RF-0 1 I64 

Rosen, M.R., 2003, Trends in Nitrate and Dissolved Solids Concentrations in Groundwater, Carson 
Valley, Douglas County, Nevada 1985-2001, USGS WRI 03-4152. : i  ' I  

Rosner, B., 1975, On the detection of many o'utliers: Technometrics, V. 17, p. 221-227. 

Schertz, T.L., Alexander, R.B., and Ohe, D.J., 1991, The Computer Program Estimate Trend 
(ESTREND), A System for the Detection of Trends'in Water Quality Data: 'Water Resources " 

. .  

. .  

. .  
. .. 

Investigations Report 91-4040,63pp. 

Sen, P.K., 1968, Estimates of the regression coefficient based on Kendall's tau: J. American:'Statistical . . 
Ass&., V. 63: p. 1379-1389. 

Smith, D.G. and McCann, P.B.,'2000, Water quality trend detection in the presence of changes in.  . 
analytical laboratory protocols. In Proceedings of the 2000 National Water Quality Monitoring Council. . ... 

. .  . . . ,  
. .  . . .  

. I  

.. .. 
* I  . . _ .  , . .  

.:, . .. 
.h.<. . .  . . . ,  

http://ww w . n wamc.org/2000proceeding/DaDers/pap smith( b).pdf 
. I .  

. 
,. . . . .  . .  

USGS,'2004a, Availability of S-ESTREND, an S-PLUS'based version 0fESTRENb. ' . 

http://water.usgs.gov/ad~n/memo/OW/qwO2.12.html .. ~ , . .  

.. . . .. 

. .  . . I , . . .  . 
. .  

., . . .  . .  
_ I  , . '  . 

USGS, 20046, USGS Library for S-Plus for..Windows., Cdde and datasets downloadable at ,: . . . . %.: 

.http://water.usgs.gov/software/library.titml . , . . r. . . .  

. .  . . i  
. . .  

. .- . .  , .  
. .  

. .  . . . .  

. .  

r . : .  I .  . e  ., ,: . .  . .  ., . ! 
. . .  . .  

. .  

. .  . .  : . 

.. . . .  

. .  , ,' i . 

. ' :  
1 ; .  

. .; 

Review Exemption: CEX-105-01 
6-4 



\! 

04-RF-0 1 164 2 

RESPONSE TO COMMENTS ON DRAFT STATISTICAL METHODS 
FOR TRENDING GROUNDWATER QUALITY DATA 

Dated July 2004 

During August 2004, Rocky Flats issued a draft of tlie above report for review. CDPHE 
responded with review comments by Edgar Ethington and Elizabeth Pottorff. EPA did not 
provide written comments. This letter contains our responses to the CDPHE review comments 
and describes how this report has been finalized. 

Comment 1 

I concur with the reconiniendation of the report to iise the Seasonal-Kendall test to estimate 
trends. I t  is a robust, non-parametric statistical test with a inininium of pre-test data 
ni an i pu I at i o n . 

'Reply 1 

We agree. 

Comment2 . 

I do  not concur that semi-annual sample intervals are always preferred. Sample intervals need to 
be area specific to dynamic hydraulic systems. 

Reply 2 

Groundwater velocities at  RFETS often vary seasonally and by area and lithology of the.porous 
mediiim. Groundwater velocities on steep hillsides are generally faster. However, the mean 
groundwater velocity through Rocky Flats AIIiiviiim is only 105 feet per year, and 138 feet pei- 
year in Colluvium (2003 RFCA Annual Groundwater Monitoring Report). Since 1996 the 
routine groundwater monitoring network at RFETS has siiccessfiil ly used semi-annual 
groundwater saiiipling, with the exception of RCRA wells, which are on quarterly monitoring. 

Comment 3 

I recommend a section be added to briefly describe, i n  mathematical notation, the itse and 
appreciation' of the three trending methods described. 93.7 perhaps. R. D. Gibbons (1994) gives 
a good example of a brief niathematical description. 

Reply 3 

We don't believe that adding a new section is necessary. Readers who desire a detailed 
tinderstanding of these methods are referred to tlie published scientific literature cited i n  Section 
6, References. 
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Comment 4 

The assumption that trends will be monotonic is a best guess. I do not disagree that this 
assumption is an appropriate first estimate. However, other assumptions will be considered 
during periodic review of tlie data. 

We agree. Tlie data are likely to display a niitiiber of fluctuations, lip and down. Whether these 
represent long-term trends might be arguable, but they will likely result from various causes as 
noted i n  tlie trending discussion. 

Comment 5 

The trending considered i n  this document is for long-term multi-year trends. 

Reply 5 

We concur. A number of years of data are required to identify significant trends. 

Comment 6 

$2.5 Extra effort needs to be made to n1inimize lost data points. If samples are lost or 
rendered unusable, tlie sample should be retaken as soon a practicable. 

Reply 6 

Replacement.of lost or unusable water samples is a reasonable idea and should be considered in 
the p roced 11 res for po st-c los ti re gro 11 nd w ate r in on it o r i n g . 

Comment 7 

$2.6 Last paragraph. I n  a seasonal data set with more than one sampling event, a seasonal 
average result is preferable to a randomly chosen datum. 

Reply 7 

Tlie repol-t follows tlie findings of a paper by statisticians associated with Colorado State 
University, who indicate that collapsing data by random subsan;pling is statistically more 
effective than using tlie mean or median. See Harcum, Loftis, and Ward: 1992, Selecting trend 
tests for water qiiality series with serial correlation and missing values: Water Resoiirces 
Bitlletin, V. 28, No. 3, p. 469-478. 

Comment 8 

$2. I O  The Department concurs that trends i n  \vatel- quality data are often non-linear. Changes 
in water quality more often eshibit an exponential form. 

2 
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Reply 8 

We agree that water quality trends are often noli-linear; standard industry practice is to test for 
monotonic trends but such data should not be assumed linear. . 

Comment 9 

82. I O  r Last paragraph. Another objective of post-closure monitoring will be to demonstrate 
ground water goals are being achieved, or not. 

Reply 9 

We coiiciir. The outcome of a trending analysis could show conditions other than those 
anticipated or desired. Contingencies should be planned for siicli eventualities. 

Comment 10 

92.1 1 Second paragraph. I do not concur with a suggested proposal to include data records for 
wet arid dry years i n  the initial trend analysis. Site closure represents the start of a new 
hydraulic equilibrium. Wet and dry year results from a former eqiiilibriiiiii will skew tlie 
res ii  Its . 

We coiiciir that closure represents the start of a new hydraulic equilibriiim. However, a minimum 
of four years of water quality data will likely be required before trend testing can iisefiilly be 
employed. Thus, if stakeholders desire trend testing to start following the first year of post- 
closure monitoring, it will be necessary to base tlie trend on at least three years of pre-closure 
data. If trend testing were to begin with tlie first CERCLA five-year review, then no pre-closure 
data need be used. 

Comment 11 

$3.2 Use of exogenous variables in trend analysis may be iisefiil. It may not. 

Reply 11 

We coiiciir.' The selection of an appropriate exogenous variable, and an accurate and quantifiable 
understanding of its influence, is critical to its successfill application to a trending analysis. Our 
initial application of an exogenous variable failed to enhance previously identified trends. We do 
not propose applying trending analysis compensated by siicli variables. 

Comment 12 

$3.3 Manipulation of data should be kept to a m i n i m u m .  Since tlie Seasonal-Kendall method 
does not manipulate or smooth data, it is preferred to a metliocl that computes a seasonal 
mean or g a n d  mean as part of the testing process. 

3 



Reply 12 

We agree; that is part of the basis for 0111' proposal. 

Comment 13 
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54.4.2 1 would not make the initial asstimption of normality for water data sets, particularly 
containinant data sets. How do the data sets look when lion-normality is the nu l l  
asstiin pt ion? 

Reply 13 

The Seasonal-Kendall method has been selected became it does not require any assumption or 
proof of normality. We agree that inaiiy water quality datasets are not normally distributed. The 
application of parametric methods requires that the data were randomly drawn from a normal 
distribution, and eliminates such methods from further consideration. Section 4.4.2 simply 
reports the results of testing the groundwater data for normality using two standard statistical 
methods, the Shapiro-Wilk and Shapiro-Francia tests. The n u l l  hypothesis of each test is that the 
data are normally distributed. By design, hypothesis tests seek sufficient evidence to reject the 
null hypothesis at a given level of confidence, otherwise the n u l l  hypothesis is accepted. We are 
unaware of a statistical test for non-normality, i.e. one in which the n u l l  hypothesis is that the data 
are not normally distributed. 

Comment 14 

94.4.4 1 am not convinced that auto-correlation of quarterly monitoring data is a problem that 
should preclude its use. It appears that auto-correlation of semi-aiiiiiial and quarterly data 
is approximately the same. I n  other words, auto-correlation is not sufficient reason for 
the facility to preclude quarterly sampling. 

Reply 14 

We agree that autocorrelation should not pi-eclude the use of qiiarterly groundwater monitoring 
data. RFETS routinely uses quarterly data collected at RCRA wells. Evidence of serial 
correlation in the semiannual datasets was only slightly less frequent than it was in the quarterly 
datasets. However, that being said, the historical record at Rocky Flats does not suggest that the 
well concentrations are changing at a rate that would be perceptible sooner should the data be 
collected more freqiie&ly. Even semi-annual sampling may be more frequent than would be 
in i i i  i in a I I y accepta b I e to re I ia b l y detect s ign i fica n t t ren ds . 

Coin men t 15 

Figure 4-13 - Well PI 15689 looks like a new problem, dicl we keep it iii the iiioiiitoi-ing netivork? 

Reply 15 

VOCs siicli as PCE. TCE. and VC \vere first cletected i n  grouncl\vater at Well PI 156S9 during 
1993 and the well has undergone many years of water quality monitoring. Well PI 15689 ancl 
nearby Well PI 15jS9 both contain VOC-coiitamiriatecl gyouncl\valer o f  the IA pliiiiie near B-55 1 .  
Well PI ljjS9 remains in the monitoring network. but PI  lj6S9 i s  no longer inclucled i n  the 
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network. Because this i s  the central-IA, n~i i i ie ro~~s  downgradient wells monitor the progression of 
this plume. 

Comment16 

P4-44 iinfinished sentence in paragraph below bullets. 

Reply 16 

The sentence has been completed. 
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